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Abstract

We observe that many system policies that make threshold
decisions involving a resource (e.g., time, memory, cores) nat-
urally reveal additional, or implicit feedback. For example, if
a system waits X min for an event to occur, then it automati-
cally learns what would have happened if it waited < X min,
because time has a cumulative property. This feedback tells
us about alternative decisions, and can be used to improve
the system policy. However, leveraging implicit feedback is
difficult because it tends to be one-sided or incomplete, and
may depend on the outcome of the event. As a result, existing
practices for using feedback, such as simply incorporating it
into a data-driven model, suffer from bias.

We develop a methodology, called SAYER, that leverages
implicit feedback to evaluate and train new system policies.
SAYER builds on two ideas from reinforcement learning—
randomized exploration and unbiased counterfactual
estimators—to leverage data collected by an existing pol-
icy to estimate the performance of new candidate policies,
without actually deploying those policies. SAYER uses im-
plicit exploration and implicit data augmentation to generate
implicit feedback in an unbiased form, which is then used
by an implicit counterfactual estimator to evaluate and train
new policies. The key idea underlying these techniques is to
assign implicit probabilities to decisions that are not actually
taken but whose feedback can be inferred; these probabilities
are carefully calculated to ensure statistical unbiasedness.
We apply SAYER to two production scenarios in Azure, and
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show that it can evaluate arbitrary policies accurately, and
train new policies that outperform the production policies.

1 Introduction

A system policyis any logic that makes decisions for a system,
such as choosing a configuration, setting a timeout value,
or deciding how to handle a request. System policies are
pervasive in cloud infrastructure and can seriously impact
the performance of a system. For this reason, developers are
constantly trying to iterate on and improve them. Typically
this is done by collecting feedback from the currently de-
ployed policy and analyzing or processing it to generate new
candidate policies. The more feedback that can be collected,
the more insights that can be learned to improve the policy.

We observe that a large class of system policies naturally
reveal additional feedback beyond the decision that is actu-
ally made. These policies make threshold decisions involving a
resource such as time, memory, or cores. Since the resources
are naturally cumulative, thresholding on one value often
reveals feedback for other values as well. For example, con-
sider a system policy that decides how long to wait for an
unresponsive machine before rebooting it. If the policy waits
X min, then it automatically learns what would have hap-
pened if it waited <X minutes, because time is cumulative.
We call this kind of feedback implicit feedback.

Ideally, we would like to leverage implicit feedback to
evaluate new candidate policies and ask: what would hap-
pen if we deployed this policy in production? This type of
“what-if” question can be answered using counterfactual eval-
uation, a process that uses data collected from a deployed
policy to estimate the performance of a candidate policy. If
counterfactual evaluation can be done offline, it provides
a powerful alternative to methods like A/B testing (which
require live deployment of a policy), because it means that
we can evaluate policies without ever deploying them [16].

Unfortunately, implicit feedback is difficult to leverage
because it typically appears in a biased form. For instance
in the above example, feedback is only received for wait
times <X, i.e., it is one-sided. In fact, the amount of feedback
received may even depend on the outcome of an event: if
the unresponsive machine recovers within X min, then we
actually get feedback for any wait time, because we know
exactly when the machine recovered. Biased feedback is
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difficult to leverage for counterfactual evaluation because it
generates more feedback for some actions than for others.
For example, a policy that always waits <3 min will never
generate feedback that can be used to evaluate a candidate
policy that waits 4 min or more.

How do we leverage implicit feedback that is one-sided
and outcome-dependent? We draw on ideas from statistics
and reinforcement learning (RL) to provide a starting point.
Specifically, we leverage: randomized exploration, which mod-
ifies a deployed policy to choose a random action some of the
time, thereby increasing the coverage over all actions; and
unbiased counterfactual estimators, which use exploration
data collected from a policy to accurately estimate a candi-
date policy’s performance. The threshold decisions we study
naturally satisfy certain independence assumptions (§3.1),
allowing us to build on particularly efficient exploration al-
gorithms and counterfactual estimators. Unfortunately, all
of these techniques assume that a policy receives feedback
only for the (single) action that it takes. In other words, they
are unable to leverage implicit feedback.

We develop a methodology called SAYER that leverages
implicit feedback to perform unbiased counterfactual evalu-
ation and training of system policies. SAYER develops three
techniques to harness the implicit feedback revealed by thresh-
old decisions: (1) implicit exploration builds on existing ex-
ploration algorithms to maximize the amount of implicit
feedback generated; (2) implicit data augmentation augments
the logged data from a deployed policy to include implicit
feedback; and (3) an implicit counterfactual estimator uses
the augmented data to evaluate and train new policies in an
unbiased manner. A key idea underlying SAYER is to assign
implicit probabilities to decisions that are not actually taken
but whose feedback can be inferred; these probabilities are
carefully calculated to ensure statistical unbiasedness.

As a community, we have developed a variety of methods
for counterfactual evaluation, ranging from offline methods
like simulators and data-driven models, to online methods
like A/B testing. However, as we discuss in §2.3, most of
these approaches suffer from bias, and approaches that are
unbiased are either too invasive (e.g., they require a live de-
ployment) or are not data-efficient. None of these approaches
leverage implicit feedback. In contrast, SAYER builds on tech-
niques from RL to enable unbiased and data-efficient coun-
terfactual evaluation.

Contributions. SAYER makes the following contributions:

e We demonstrate the presence of implicit feedback in sys-
tem policies that make threshold decisions (§2), and de-
velop a framework for harnessing this feedback. SAYER
provides a new unbiased counterfactual estimator for im-
plicit feedback, supported by new implicit feedback-aware
algorithms for exploration and data augmentation (§3).
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e We develop an architecture for integrating SAYER into
the lifecycle of existing system policies (§3.1), supporting
their continuous optimization lifecycle (§3.3). This enables
policies to continuously evolve.

o We apply SAYER to two production scenarios in Azure:
(§4.2-§4.3): Azure-Health, a system that handles unrespon-
sive machines, and Azure-Scale, a system that creates scal-
able sets of virtual machines.

2 Implicit Feedback

This section provides the necessary background for studying
system policies that yield implicit feedback. We first show
that threshold decisions naturally reveal additional, implicit
feedback beyond the decision that is actually taken (§2.1).
Leveraging this feedback to evaluate new policies is difficult,
however, because it appears in a biased form (§2.2). A survey
of existing approaches for policy evaluation (§2.3) shows
that reinforcement learning (RL) provides a foundation for
addressing this bias. However, no existing approach, includ-
ing RL ones, can leverage implicit feedback, motivating the
goals of SAYER (§2.4).

2.1 Implicit Feedback in Threshold Decisions

Many system policies make threshold decisions based on a
resource such as time, memory, cores, etc.. These decisions
choose a threshold value of the resource on which some
behavior of the system is conditioned. Some real examples
of threshold decisions made in the Azure cloud include:

o time: How long to wait for unresponsive machines before
rebooting them (Azure-Health, §4.2).

e VMs: How many extra VMs to create in order to complete
a set of VM creations faster (Azure-Scale, §4.3).

e cores: What level of CPU utilization triggers an elastic
scaler to increase/decrease the number of replicas?

Decisions like these are pervasive in cloud infrastructure
and can seriously impact the performance of a system. We
study two of these decisions in this paper. As a running
example we use Azure-Health, a system which monitors the
health of physical machines in Azure’s datacenters, with the
goal of minimizing downtime for customer VMs. If a machine
becomes unresponsive, a system policy decides how long
to wait for the machine to recover before rebooting it and
reprovisioning its VMs, a process that may take >10 min.
The policy chooses a wait time from {1,2,...,10} min (the
longest wait time being comparable to the reboot cost).

In each of the above examples, the resource in question
has a natural cumulative property. For example, if the Azure-
Health policy waits X min for an unresponsive machine, this
automatically tells us what would have happened if it waited
<X min, because time is cumulative. Similarly, allocating
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Figure 1: Counterfactual evaluation of a candidate pol-
icy using unbiased vs. biased data, based on real pro-
duction data from Azure-Health. The mean estimates
are normalized to the candidate policy’s true cost. Esti-
mates based on biased data misrepresent the true cost
by 9%, while estimates based on unbiased data are ac-
curate and have lower variance. Confidence intervals
are obtained by repeating the analysis on subsamples
of the same size using a bootstrap procedure [12].

X extra VMs tells us what would have happened if we allo-
cated fewer VMs, and scaling up at X% CPU utilization tell
us about lower thresholds. Interestingly, feedback can also
be revealed for thresholds greater than the chosen action.
For example in Azure-Health, if we wait X min for an unre-
sponsive machine and it recovers within that time, then we
actually get feedback for all other waiting times, since we
know exactly when the machine recovers. In this case, the
amount of feedback depends on the outcome of an event.
In all of the above examples, feedback is revealed for a
decision that was not actually taken, but can be inferred from
the decision that was taken. We call this implicit feedback.

2.2 The Bias Problem

Implicit feedback has the potential to accelerate improve-
ments to system policies, because it allows developers to ask
“what if” questions about alternative policy decisions. For
example, an Azure-Health developer may ask: what if we
waited longer for all unresponsive machines, or what if we
waited less time for newer machines than older ones? An-
swering these questions requires counterfactual evaluation,
which evaluates the performance of a new candidate policy
using feedback collected from the current deployed policy.

Partial feedback. Unfortunately, implicit feedback is often
one-sided—e.g., feedback is revealed for all thresholds <X
but not >X—making it a form of partial feedback, where each
decision only reveals feedback for some of the actions. Par-
tial feedback is inherently biased, because it generates more
feedback for some actions than others, making it difficult to
use for counterfactual evaluation. For example, an Azure-
Health policy that always waits <3 min for unresponsive
machines will never generate feedback for longer waiting
times. As a result, any data collected from this policy cannot
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be used to counterfactually evaluate a candidate policy that
waits 4 min or more.

Full feedback. In contrast, full feedback arises when each de-
cision reveals feedback for every possible action. This would
be the case if the Azure-Health policy waits the maximum
time (10 min) for every machine, revealing implicit feedback
for all lower times as well. Such full feedback data is unbi-
ased. Unfortunately, full feedback data is rare in threshold
decisions, and typically only arises when a system is initially
deployed with a very conservative policy (often to collect
data that will be used to train better policies). In our work,
we use full feedback data only to train initial policies, and as
an idealized baseline to quantify the effects of biased data.

As an illustration of the bias problem, we take produc-
tion data from an initial two-month period during which
Azure-Health deployed the conservative policy of always
waiting 10 min, generating an unbiased, full feedback dataset.
We then derive a biased, partial feedback dataset based on
a more optimized policy they used later on. We use the bi-
ased and unbiased datasets to counterfactually evaluate a
new candidate policy. Figure 1 shows that the counterfactual
estimate using unbiased data closely matches the true cost
of the candidate policy, even when the dataset is small; with
more data, the variance reduces sharply around the true cost.
In contrast, when using biased data, the estimated cost devi-
ates from the true cost by 9%, and no amount of additional
data removes this bias. This is an important point: although
additional data can reduce the variance of an estimate, it can-
not remove the underlying bias [27]. The candidate policy in
this example appears to have higher cost than it truly does,
which could mislead the Azure-Health team.

2.3 Existing Approaches

Many existing approaches aim to address the bias problem
when counterfactually evaluating a policy, as summarized
in Table 1. Here, we discuss the strengths/weaknesses of
each approach in the context of threshold decisions and their
implicit feedback. The high-level takeaway is that most ap-
proaches used in systems still suffer from bias. Unbiased
approaches from RL give a strong starting point for SAYER,
but they are are either too invasive (e.g., they require a live
deployment) or are not data-efficient. In particular, no exist-
ing approach leverages implicit feedback.

A/B testing is the gold standard for evaluating policies
in a cloud system [23, 24], but it requires deploying each
candidate policy live alongside the current deployed policy,
and randomly splitting traffic/requests between the poli-
cies. The data collected from an A/B test can only be used
to evaluate the deployed policies, making it a costly and
inefficient approach. Online learning approaches also de-
ploy a policy in a live setting and use data collected from
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Low bias  Data efficient Less invasive
A/B testing v X X
Online learning o X X
Simulator X v 4
Data-driven modeling X v v
Naive exploration/IPS v X v
SAYER v v v

Table 1: Different approaches for counterfactually
evaluating policies that make threshold decisions
(O = “somewhat”). Naive exploration and IPS allow
unbiased, offline evaluation of arbitrary policies, but
they fail to leverage implicit feedback like SAYER.

its decisions to continuously update the policy. Several sys-
tems [1, 8, 9, 13, 34, 40] use online learning or RL algorithms
that can accurately evaluate candidate policies that are very
similar to the depoyed policy, but incur bias when evaluating
policies that are different.

Instead of deploying policies, a simulator of the produc-
tion environment can be used to evaluate arbitrary policies
offline. This approach is data-efficient and non-invasive, but
creating and maintaining an accurate simulator of a complex,
evolving system can be as large an undertaking as the system
itself [4, 14], making it prone to modeling biases [14].

Because of these difficulties, system designers often create
data-driven models to predict the outcome of a given de-
cision in a live system (e.g., [20, 25, 39]). In particular, many
proposals train ML models to predict the outcome of an ac-
tion based on all the available context, and make decisions
based on these predictions [5, 15, 22, 30, 35, 41, 42, 44, 47, 48].
However, a misspecified model will introduce biases, and
(re)training it on partial feedback data collected when follow-
ing the decisions of an earlier model will simply perpetuate
these biases (see Figure 1).

Another data-driven modeling approach, currently used
by the Azure-Health team, is survival analysis. Survival anal-
ysis is a statistical modeling approach that postulates a distri-
bution over machine recovery times and uses this to predict
any unobserved outcomes. This distribution is fitted to the
data using right censoring, which explicitly models the prob-
ability of missing feedback to remove bias. However, such
right censoring relies on the specific shape of the distribu-
tion, and a missspecification will reintroduce bias. Survival
analysis also makes it harder to leverage available context
when making a decision: it either requires large amounts of
data to fit a distribution for each context, or fitting a more
complex distribution that is more likely to be misspecified.

One way to avoid bias issues entirely is to use naive ex-
ploration, in which the deployed policy picks a random
action for some fraction of the decisions, and the feedback
for these exploration decisions is used to evaluate candi-
date policies. For example, Azure-Health currently waits the
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Figure 2: SAYER vs. other approaches. This figure is il-
lustrative; actual figures appear later (e.g., 7b).

maximum time of 10 min for 35% of its decisions (reveal-
ing implicit feedback for all lower wait times), and the CFA
system [19] for video QoE optimization collected data on a
small portion of sessions by taking uniform random actions.
These exploration datasets are unbiased and can hence be
used to evaluate arbitrary policies offline.

By additionally recording the probability of each cho-
sen action, a technique called Inverse Propensity Scoring
(IPS) [16] (and more advanced variants like doubly robust
estimators [10]) can be used to leverage both the exploration
decisions and the biased decisions of the deployed policy.
This is because IPS uses probabilities to reweight (debias) the
cost feedback of each action to compensate for differences in
the observed frequency of actions between the deployed pol-
icy and candidate policy. This reweighted data can be used to
evaluate the cost of a candidate policy, or compute updates
to the policy during optimization. Although the utility of
IPS has been recognized [4, 29], it remains underutilized by
the systems community. One reason for this may be that IPS
requires a policy’s decisions to satisfy certain independence
assumptions. Fortunately, these assumptions are naturally
satisfied by the threshold decisions we study.

We note that Table 1 identifies general properties that
may not hold in all situations. For example, if a threshold
decision can be perfectly modeled, then a simulator or data-
driven model may be unbiased. Since IPS comes closest to
our goal, SAYER builds on IPS to develop a methodology
that is unbiased and data-efficient. Figure 2 illustrates the
expected contrast between SAYER and these prior methods.

2.4 Goals of SAYER

As explained above, randomized exploration and IPS pro-
vide a good foundation for SAYER, because they enable unbi-
ased counterfactual evaluation of arbitrary policies. However,
these approaches suffer from a serious limitation: they only
consider feedback for the (single) action taken by a policy
decision. To leverage implicit feedback, SAYER must develop
new techniques that can be integrated easily into existing
system policies. Specifically, SAYER addresses two challenges:
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1. How do we leverage implicit feedback that is biased and
outcome-dependent? SAYER develops a new counterfactual
estimator for implicit feedback (§3.2) that is supported by
new implicit exploration and data logging techniques (§3.3).

2. How do we incorporate implicit feedback into the lifecy-
cle of a system policy? SAYER modifies existing components
of a system policy’s workflow (§3.1) while supporting its
continuous optimization lifecycle (§3.3).

We focus on threshold decisions that satisfy the inde-
pendence assumptions mentioned above; for more complex
decisions, IPS and SAYER may not be appropriate (see §6).
We evaluate SAYER in two production systems in Azure
(§4.2,§4.3) using real production data and prototypes that
mimic the production systems.

3 Design of SAYER

This section presents the design of SAYER. We state SAYER’s
assumptions and overview its architecture, and then present
the key technical idea that enables unbiased counterfactual
evaluation based on implicit feedback. We then show how
SAYER integrates with the lifecycle of a system policy.

3.1 Overview

Terminology and assumptions. A system policy () makes
decisions by taking the context (X) of a decision as input
and choosing a single action (7(X)) to take from a set of
allowed actions. The context ¥ comprises properties of the
environment or the system state that are considered relevant
to the decision. Traditionally, when the policy takes an action,
we observe the cost (feedback) c(r(X)) associated with that
action. But as observed in §2.1, in system policies that make
threshold decisions, we can deduce the cost of more actions
than the one we actually take, i.e., implicit feedback.

We make three assumptions that are relevant to the sys-
tem policies we study. First, we assume that the decisions
made by a policy are mutually independent. This assump-
tion corresponds to the contextual bandits setting [11, 28]
and is required by the IPS estimator we build on. Intuitively,
it means that the action chosen by the system policy at a
given time does not influence the cost of future actions. For
instance, such a long-term influence could arise if an action
drastically changes the load of the system, thereby changing
the future distribution of contexts; or by changing the state
of a cache, thereby changing the cost of a future action with
the same context. Fortunately, the independence assumption
is a good model for the threshold decisions in §2.1, as they
involve one-step decisions in large enough systems that the
impact of individual decisions are well isolated.

Second, we assume the policy makes a one-dimensional,
discrete decision. That is, the actions are the (multiple) possi-
ble values for a single parameter. This is a standard assump-
tion in the learning literature we build on, where exploring
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Figure 3: Architecture of SAYER. SAYER expands the
traditional policy optimization workflow by adding
three new modules (highlighted in blue) that leverage
the available implicit feedback.

continuous, unbounded, or complex action spaces quickly
becomes intractable without strong structure [38]. When the
action space is continuous, as in our Azure-Health example,
we can discretize the possible actions within a chosen range,
e.g., between 0 and a maximum wait time fixed a priori. This
restriction does not apply to the context or cost function,
which may be continuous and multi-dimensional.

Third, we assume that the observed potential outcomes
do not depend on the chosen action. This assumptions is
a direct extension of the inclusion restriction assumption
from causal inference [17] to our implicit feedback setting.
More concretely, it means that in Azure-Health, the recovery
state of a machine after waiting for ¢ does not depend on
whether the reboot timeout is set to t + 1 or ¢ + 10. This is
a natural assumption, because the timeout is never acted
on until the actual reboot. In the Azure-Scale application,
though, over-allocating by ten or twenty VMs could yield
different completion times for a particular VM (e.g., due to
queueing effects), violating the assumption. Fortunately, we
verify that the assumption holds in practice (§4.3, Figure 9).

Finally, the contextual bandit literature typically also as-
sumes that contexts and costs come from stationary distribu-
tions. This enables bandit algorithms to gradually learn the
distribution and decrease exploration over time. However,
practical system deployments often experience context and
cost distributions that change over time. In this work, we
thus focus on continuous exploration, which allows us to
cope with this kind of non-stationarity.

Architecture. Figure 3 shows the architecture of SAYER. The
gray boxes are standard components of a decision-making
system, which include: a policy engine that hosts the de-
ployed policy and invokes it on every decision to obtain the
policy’s chosen action, a logging component that records the
outcome (cost) of each decision, and a policy training compo-
nent that updates the policy based on the logged data. SAYER
adds the outlined blue boxes, which we describe in detail in
§3.3. The added components can be integrated seamlessly
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into an existing system. For example, SAYER’s implicit ex-
ploration adds some randomization to the deployed policy’s
decisions, but this does not change the policy deployment
interface. Similarly, existing logging components typically
already log extensive information about each decision (e.g.,
context, action, and cost); SAYER additionally logs informa-
tion about the randomization added by the implicit explo-
ration component (in the form of action probabilities). SAYER
uses this information to augment the traces output by the
logging component with implicit feedback, which is done as
a separate post-processing step.

The key component of SAYER is an unbiased counterfactual
estimator that uses the implicit feedback augmented in the
logged data of the deployed policy, to estimate the cost of an
arbitrary candidate policy on the same sequence of decisions.

3.2 Implicit feedback-based counterfactual estimator

We present our algorithm for implicit feedback-based coun-
terfactual estimation in a progressive fashion, starting from
a basic framework that guarantees unbiased estimation.

In the simplest setting where a policy only receives feed-
back for the single chosen action, also called bandit feedback,
the data collected will be biased. Here, IPS provides a frame-
work for unbiased estimation.

IPS: Unbiased estimator for bandit feedback. To remove
bias from a log of bandit feedback data, a classic solution is
to log the probability (p) of the action being chosen along-
side the context, action, and cost of the decision, yielding a
tuple (%, a, ¢, p). Based on this log, a technique called Inverse
Propensity Scoring (IPS) [16] can then provide an unbiased
estimator for any candidate policy 7:

1 (%)=
IPS(7) = & Yizacp) —{”(;) e,

IPS finds instances in the trace where 7 chooses the same
action as the deployed policy, i.e., 7(X) = a (the indicator
function 1 has value 1 under a match and 0 otherwise). But
instead of simply adding the associated cost under a match, it
re-weights it by the inverse of the probability (p) that a was
chosen. Thus if a has low probability, i.e., it is rarely chosen
by the deployed policy, IPS will upweight it to compensate
for the fact that a is underrepresented in the trace.

Implicit feedback vs. bandit feedback. IPS is an unbi-
ased estimator for bandit feedback, but it completely ignores
any feedback that may be received for actions other than a,
i.e., implicit feedback. Implicit feedback thus provides a type
of partial feedback that lies between full feedback and ban-
dit feedback. Although partial feedback has previously been
studied using feedback graphs [2, 33], those algorithms take a
fixed feedback graph as input and optimize one policy online.
In contrast, we are concerned with counterfactual evaluation
of many policies, and the feedback we receive depends on
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Figure 4: Implicit feedback example. Each black ar-
row indicates that the feedback of an action can be
deduced from the feedback of the deployed policy’s
action. Importantly, implicit feedback is outcome-
dependent: if a machine responds (at r) before the cho-
sen wait time a, we obtain full feedback, but otherwise
we only obtain feedback for actions < a.

the outcome of each decision. For example, in Azure-Health,
if a machine responds at time 7 before the chosen wait time
a, we obtain full feedback, but if it does not, we only obtain
feedback for actions < a. This is illustrated in Figure 4. Since
IPS requires a probability p that is fixed in advance, it does
not support such variable feedback out of the box.

So how do we incorporate implicit feedback into IPS with-
out compromising its unbiasedness?

Implicit: Unbiased estimator for implicit feedback. Our
key insight is that IPS can be interpreted as matching data-
points in the trace according to an event E under which we (1)
know the cost feedback and (2) can compute the probability
that E occurs, P(E), in order to reweight the cost. We can
thus abstract IPS to obtain a template for our estimator:

.. 1{E >
Implicit(r) = ﬁ Z(f,a,c,[j) %c(ﬂ(x)).

In the original IPS estimator, E = {7(X) = a} is the event
that the chosen actions match. P(E) = p since the actions
match precisely when the deployed policy chooses a.

Now, by redefining E to be a larger event, we can match
a larger set of points, while preserving the unbiasedness of
this template! In particular, SAYER defines E as the event that
“the feedback of the candidate policy’s action 7(X) can be
deduced from the outcome of the deployed policy’s action a”.
Intuitively, 1{E} is 1 only if the feedback c((X)) is available,
either explicitly through matching, or implicitly through
deduction from the outcome of action a recorded in the trace.
Figure 4 illustrates an example. P(E) is then the probability
that the deployed policy chooses an action whose outcome
will allow the feedback c(r(x)) to be deduced.

To make this more concrete, we derive E and P(E) for
Azure-Health. The application to Azure-Scale is similar.
Applying Implicit to Azure-Health. We define E based
on a given chosen action (wait time) g, its outcome (either
the machine responds at time 7 < a, or it times out), and a
new action chosen by the candidate policy, 7(X). The event
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that z(x)’s feedback can be deduced is:
E={n(¥) <a}VU{r <a}.

The first term follows from the property of Azure-Health’s
decisions that when 7(X) < a, ¢(r(X)) can always be deduced
(see Figure 4). Otherwise, ¢(7(X)) can be deduced only when
7 < a (Figure 4(a)). In other words, the only case when
feedback is not available is when the deployed policy’s action
a causes a timeout (i.e., 7 > a) and the candidate policy
chooses to wait even longer 7(X) > a. The recorded outcome
does not provide any information in this case.

Next, whenever 1{E} = 1, we need to compute P(E) as
well as the cost of the candidate policy’s action ¢((X)). There
are four cases, as illustrated in Figure 5.

e Case 1: a > 7 and 7 > n(X). In this case, 7(¥) will cause
the machine to reboot, so c(7(X)) = 7(X)+R, where R is the
the fixed reboot delay cost (see §4.2 for details). Moreover,
this information is available if and only if the deployed
policy chooses an action > 7(X), so P(E) = P(a > n(X)) =
Za’ > (X) P(a')-

e Case 2: a > 7 and 7(X) > 7, which means both deployed
and candidate policies will wait long enough for the ma-
chine to respond, so ¢(m(¥)) = 7. This information is avail-
able if and only if the deployed policy chooses an action
>7,50 P(E)=P(a>71)= )45, pa).

e Case 3: 7 > a and a > n(X), which means that the de-
ployed policy’s action is not long enough for the machine
to respond before rebooting, and the candidate policy
chooses to wait even less time. So c(7(X)) = 7(X) + R.
This information is available if and only if the deployed
policy’s action is greater than the candidate policy’s action,
50 P(E) = P(a 2 7(®)) = Sy m(z ().

e Case 4: 7(X) > aand 7 > a, which means E is false and
1{E} = 0, so we do not need to compute anything.

Unbiasedness and low variance of Implicit.Implicit’s
unbiasedness follows directly from that of IPS. Given a dat-
apoint (X, ¢) and the action a chosen by the policy that was
deployed at the time, we have:

( 1{E}
P(E)

E(4E)]
PAET

implying that E(Implicit(ﬂ)) = c¢(n(¥)), and hence that
Implicit is an unbiased estimate of the cost of policy =, had
it run on the same sequence of datapoints observed during
data collection. We can see that P(E), which we call the im-
plicit probability, plays a key role in this unbiasedness guar-
antee. Indeed, reweighting the implicit feedback deduced
from matched events by 1/P(E), similar to IPS’s reweight-
ing by 1/p, cancels out the E(1{E}) term in the expectation,
thereby removing the bias due to missing information.

(2®)) = =5 eln @),
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Case 4: If a < 7,7(X) > a, then
no implicit feedback

Figure 5: Example of how to calculate ¢((X)) and P(E)
based on implicit feedback in Azure-Health.

In addition, P(E) lowers the variance of Implicit’s esti-
mates, as compared to IPS. Computing the variance yields:

V(2 ) = L 2E)

6 o @

As we can see, the variance of the cost is scaled by 1/P(E).
In IPS, the weight 1/p can be quite high when the deployed
policy and candidate policy differ. In contrast, Implicit
matches a range of actions and P(E) is their total probability;
this leads to larger values of P(E) and hence lower variance.

3.3 Implicit feedback-based policy optimization

We now discuss the system components of SAYER (Figure 3),
which integrate the implicit counterfactual estimator above
into the lifecycle of system policy optimization.

Implicit data augmentation. SAYER’s logging component
ensures that the information of each decision is recorded
correctly, so that the generated traces can be used for counter-
factual evaluation and training. In a standard bandit feedback
setting, the logging component would log the tuple (X, a, ¢, p),
where X is the input context, a the chosen action, ¢ the cost
feedback received for a, and p the probability of choosing a.
In SAYER, since there is implicit feedback, we additionally log
the implicit probability and cost of all actions whose feed-
back can be deduced, i.e., (X, {(a;, ¢, p;)};). This information
is used by our implicit counterfactual estimator to correctly
handle implicit feedback. In Azure-Health, for example, if
a logged action a = 5 min leads to a machine responding
at 7 = 3 min, then instead of logging (¥, 5 min, 3 min, p),
we augment the entry with implicit feedback (using Case 1
and Case 2 in Figure 5): (X, {(a < 3 min, (a + R) min, P(a <
3 min)), (a > 3 min, 3 min, P(a > 3 min))}).

Counterfactual estimation and policy training. Given
the logged data augmented with implicit feedback and prob-
abilities, SAYER uses its implicit counterfactual estimator to
evaluate and train new policies. To train a policy, SAYER
uses a class of contextual bandit learning algorithms that
internally use estimators such as IPS to efficiently search a
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policy space [11], but replaces the internal estimator with
Implicit. SAYER follows the common practice of splitting
the logged data into a train set (to learn the new policy) and
a test set (to evaluate it); the difference is that SAYER uses
counterfactual training and evaluation algorithms, to ensure
unbiasedness. The granularity at which SAYER is run, and the
subset of data used to train and test, is largely orthogonal to
our work. For example, in our evaluation we run SAYER in a
“batch retraining” mode, where a new policy is periodically
trained from scratch on a trailing window of data, before
being counterfactually evaluated on the most recent data.
By repeating the above process, SAYER enables a continu-
ous optimization loop that allows a system policy to evolve.
Continuous optimization is necessary to cope with changes
or non-stationarity in the system or environment (§4.2,§4.3).

Implicit exploration and logging. To enable unbiased
counterfactual estimation, and to cope with non-stationarity,
SAYER includes an exploration component that adds con-
trolled randomization to the deployed policy’s decisions.
This ensures that feedback is received for all actions, not just
those deemed optimal by the deployed policy (the classic
exploration-exploitation tradeoff). A simple algorithm for
exploration is EpsilonGreedy [28], which selects a random
action € fraction of the time and uses the action chosen by
the deployed policy the remaining 1 — € fraction of the time.

Randomizing over all actions makes sense when feedback
is only received for the chosen action (i.e., bandit feedback).
However, this means that the probability of choosing an ac-
tion can be as low as p = €/a, yielding high variance (see
Equation 1) even with a large fraction of exploration actions.
In our setting, where we receive implicit feedback for other
actions, randomizing over all actions “underutilizes” this
feedback. Instead, SAYER explores by selecting the maximal
action, i.e., the action that yields the most feedback. For exam-
ple, in Azure-Health, this corresponds to waiting 10 min in
each explore step. Using the maximal action for exploration
means that the minimal observation probability is P(E) = e,
reducing the variance of our counterfactual estimator and
supporting smaller amounts of exploration. Thus for a given
exploration budget, SAYER’s implicit exploration technique
better utilizes implicit feedback. This is particularly impor-
tant to enable continuous exploration at low cost.

Of course, exploring using the maximal action may not
always be desirable, especially if that action is likely to be
costly. We use this heuristic because it allows us to explore
less frequently, and because in our applications the maximal
action is a reasonable default action that we are trying to
improve upon. An alternative would be to explore randomly
over the action space using a distribution that accounts for
the desirability of each action. However, this would require
more frequent exploration, and would not completely avoid
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exploring the maximal action, which is necessary to collect
unbiased data.

4 Evaluation

We now demonstrate the value of SAYER in two real appli-
cations from Azure—Azure-Health and Azure-Scale. Using
a combination of simulation (driven by full-feedback traces
and synthetically generated traces) and A/B testing in a live
prototype, we show that (i) compared to baseline perfor-
mance estimators, SAYER’s Implicit counterfactual estima-
tor is unbiased and has lower variance; and (ii) the more
accurate counterfactual estimation allows SAYER to train bet-
ter system policies than the baselines, even though SAYER
incurs the cost of exploration.

4.1 Methodology

We define the baselines and performance metrics common
to both applications here. In §4.2 and §4.3, we introduce the
details of each application.

Baseline estimators. Given a log of (X, a, ¢, p) tuples, we
consider four baseline performance estimators for counter-
factual evaluation and optimization:

o Direct Method uses the log to train a linear model using
Vowpal Wabbit (VW) [43], a state-of-the-art bandit library,
that predicts the cost of any context and action. This can
be viewed as a data-driven performance modeling baseline,
which may be biased by the log and the model. The cost
model is used to predict missing information when doing
counterfactual evaluation, and when training a new policy.

e Survival Analysis postulates a distribution over the out-
comes for all decisions (e.g., the distribution of machine
recovery times). Like the Azure-Health team, we fit a right-
censored Lomax (long tail) distribution using maximum
likelihood estimation (implemented with Pyro [5]). Right
censoring accounts for unobserved costs by putting all
the probability mass of the tail on the maximum observed
value. We fit this distribution on all observations, since
conditioning on features reduces the amount of data and
yields poor performance. Missing costs are replaced with
their expected value for counterfactual evaluation, and the
learned policy is the action with the lowest expected cost.

e IPS is described in §3.2. This classic counterfactual esti-
mator is well known to be unbiased, but has high variance
and does not leverage implicit feedback. It is used both for
counterfactual estimation, and to debias the cost during
policy optimization using VW [43].

e Naive Implicit is the Direct Method trained on the log aug-
mented with implicit feedback (like SAYER), but without
using implicit probabilities. It can be viewed as using im-
plicit feedback without proper reweighting, and is used to
emphasize the importance of reweighting to remove bias.



SAver: Using Implicit Feedback to Optimize System Policies

Baseline policies. To ensure fairness, all policies use the
same training interface of VW (which accepts as input a log
of (%, a, ¢, p) tuples augmented by each estimator) and train
the same model (a linear contextual bandit policy)—except

Survival Analysis, which is a different type of model. This

process yields five policies: { SAYER, Direct Method, Survival

Analysis, IPS, Naive Implicit }-based policies. These policies

use different exploration strategies: Direct Method always

uses the action returned by the trained policy; for a random
€ fraction of decisions, SAYER and Naive Implicit use the max-
imal, full-feedback action (since both use implicit feedback),
while IPS uses a random action (since it only matches the
exact action).

We also include two baselines that are not continuously
updated, but serve as useful reference design points:

e Full-feedback (v0) policy chooses the most conservative
action and obtains full feedback. It maximizes information
in the collected data at the cost of performance.

e One-shot learning (v1) policy feeds the full-feedback data
(from which we can deduce the true outcome of every
action) to VW to train a policy, but never updates the policy.
Finally, a skyline policy shows an upper bound on the

performance one can hope to achieve with our VW model:

e Omniscient is a policy trained on full-feedback data, even
when such feedback would not be available from the data
collection. This is only available in setups where we have
access to full feedback, and simulate partial feedback by
hiding information.

Metrics. We compare these approaches under a continuous
optimization scenario, in which trained policies are deployed,
and updated using a rolling window of data collected while
they were running. We focus on the following metrics:

e Trained policy cost: Each system defines a cost associated
with policy actions. We measure the cost of running a
trained policy (lower is better).

o Counterfactual evaluation error: Using data collected when
running the policy, we measure the difference between
the estimated cost for a different candidate policy, and the
true value for this cost.

For each metric we show both the average performance (cost),
as well as the range of values that can happen due to ran-
domness in the data. These ranges are computed using boot-
strap [12], a common resampling technique from statistics
analogous to averaging over repeated experiments, which
gives a sense of the variance in our results.

4.2 Application I: Azure-Health

Azure-Health is a monitoring service that uses heartbeats to
detect unresponsive physical machines within datacenters,
and is responsible for rebooting unresponsive machines after
a threshold amount of time. We formalize the problem as
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Figure 6: First training period: We use the 2nd split (S2)
to compare the performance of policies trained on the
1st split (S1), relative to the vO0 policy.

follows: faced with an unresponsive physical machine, the
policy chooses a wait time amongst ten options (the action
set) {1,2,..,10} min, before rebooting the machine. This maxi-
mum wait of 10 minutes is a practical limit imposed by the
Azure-Health team, regardless of any RL constraints. The
decision is based on a number of context features for the
machine, collected via an existing telemetry pipeline, and
available to the policy at decision time.! This context includes
the hardware/OS configuration of the machine, which cluster
it belongs to, the number of previous failures in the cluster,
and the number of client VMs running on the machine. The
cost of an action a is the total downtime experienced by
customer VMs. It is calculated as the recovery time 7, plus a
fixed reboot time R = 10 min if the server is rebooted (a < 7),
scaled by the number of VMs on the server Nys:

cost = NVMS<1{a <tir+(1-La<rt})(a+ R))

As explained in §3.2, Azure-Health provides implicit feed-
back. Choosing action a reveals the cost of all actions a’ < q,
as we know the corresponding state of the machine. If we
observe a recovery (a > 7), we can also deduce the cost of
every action, making it full feedback.

4.2.1 Trace-driven simulation
We obtained a production trace of 13.5k events with full
feedback from Azure-Health, collected during an initial two-
month period when the team deployed the conservative
policy of always waiting the maximum of 10 min. Based on
this trace, we can compute the ground truth performance of
different policies, and thereby evaluate the performance of
SAYER’s counterfactual estimator and its trained policies. We
split the production trace into three periods, each with 3000-
5000 data points, corresponding to environmental changes:
e 51 corresponds to the phasing out of a hardware configu-
ration (a specific server SKU),
e 52 lies between the events of S1 and S3, and
e 53 corresponds to a major software upgrade.

n this setting, the Direct Method resembles a heuristic predicting the
downtime of stragglers based on the history of similar machines, e.g., [3, 46].
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Figure 7: Policy optimization and evaluation over time. All plots show costs (downtime) normalized to the cost
of the default policy (v0). (7a) shows the performance of policies retrained from data they generated in $2, when
evaluated on $3. (7b) shows the counterfactual estimate (one colored dot per estimator) of how the policies from 7a
(one per box) would perform on $3, using data collected by deploying the v1 policy, normalized to the full-feedback
ground truth. SAYER achieves both unbiased and low variance cost estimates, which trains better policies (7a).

Because these hardware and software configuration changes
affect large portions of the machines, we also expect them
to affect the machine’s recovery times and the relationship
between observed features and recovery times, which we ob-
serve in the data. We leverage these three phases to evaluate
how different approaches cope with environmental changes
compared to SAYER.

First training period. First, without any prior knowledge,
we start with v0 (choosing the maximal wait time of 10 min-
utes) in S1, which produces full feedback, train new policies
according to the different approaches described in §4.1, and
evaluate these policies in S2. Figure 6 shows the results. The
policies trained by estimators Direct Method, Naive Implicit,
and v1 will be identical on full feedback. They yield a 26.5%
improvement over the v0 baseline policy. On S1, SAYER will
learn the same policy, but is slightly less efficient because
of the added exploration, which chooses the maximal action
on 10% of the actions. Despite this exploration, SAYER yields
a 25% improvement over the v0 baseline. Survival Analysis
is less expressive, as it chooses a single wait time for all ma-
chines, but it still yields a 21% improvement (alternatively,
we could train one model per cluster to take features into
account, but this degrades the results due to the small data).

Continuous training. Second, we evaluate different policy
training approaches in a dynamic setting by deploying each
policy on S2 (yielding the performance from Figure 6), col-
lecting the resulting feedback, and retraining each policy
on the data generated while it was running. For instance,
if a policy waits 3 min for a machine, we only show the
costs for actions a < 3 in case of a reboot, and all costs if
the machine recovers within that time frame. This partial
feedback data is used to train the new policy, which is then
evaluated on S3. Figure 7a shows the policy cost for each of
these retrained policies, measured on S3 using full feedback.
There are several observations about SAYER’s performance:

o Substantial benefits by continuous retraining: As we see in
Figure 7a, the Omniscient skyline policy, which trains its
policy on S2 with full feedback, yields a 15.5% improve-
ment over v0 when deployed on S3. However, keeping the
one shot model trained on S1 only gives an 8.6% improve-
ment. We expect even larger degradation as the environ-
ment evolves.

o Benefits of implicit exploration: Naively retraining on data
collected when running an optimized policy (i.e., without
exploration) is suboptimal. Figure 7a shows that training a
policy with Naive Implicit, which ignores missing feedback
from a lack of exploration, is almost as bad as v0. Even
extrapolating missing feedback using Direct Method or
Survival Analysis (which does improve performance to
7.6% and 6.1%, respectively) is still short of the v1 baseline
(trained on older but full feedback data). SAYER is the only
one to reach Omniscient’s performance, again with a small
added cost for exploration, yielding a 14.7% improvement.

Counterfactual estimation accuracy. Next, Figure 7b eval-
uates the accuracy of various counterfactual estimators. Coun-
terfactual estimators can be used to evaluate any candidate
policy, based on data collected when running a different
policy. To evaluate this capability, we use all our policies
trained on S2, and evaluate their respective performance
on S3 (boxes in Figure 7b) according to each counterfactual
estimator (colored dots in Figure 7b), using data collected
while running v1. Comparing these counterfactual results
to the true (full information) cost, we can compute the bias
(expected error) and variance of each counterfactual estima-
tor. Accurate estimators can help operators distinguish good
policies from bad ones without running the policies, based
on data collected by the deployed policy.

o Not accounting for missed feedback causes significant bias:
Direct Method, Naive Implicit, and Survival Analysis have
mean estimates far away from the truth, even if they try
to fill the gap of missing information (Direct Method and
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Figure 8: Behavior of periodic optimization and counterfactual evaluation. The red vertical line shows when poli-
cies start being updated based on the data they collect. The black vertical lines show environment changes (the

generator is trained on a different part of our data trace).

Survival Analysis). All three approaches also reverse the
order of SAYER and other policies (not shown), resulting in
amisleading assessment of their relative performance, and
deploying a potentially worse policy if this assessment is
acted on. In contrast, SAYER and IPS use exploration and
thus yield unbiased estimates when evaluated on multiple,
varied policies.

o Implicit feedback reduces variance: IPS, which uses explo-
ration, also yields unbiased counterfactual estimates of a
policy’s cost, but compared to SAYER (Implicit estima-
tor), the variance of the estimate is much higher. This also
implies poorer training performance, with the trained pol-
icy yielding similar results to the one shot model (8.5%
improvement over v0) in Figure 7a.

4.2.2 Microbenchmarking using synthetic traces

We also generate simulated traces inspired by the real dataset,
in order to evaluate SAYER in the face of non-stationarity,
when periodically retraining policies on a trailing window of
data. Our goal is not to model the real world exactly; instead,
our goal is to show how the different counterfactual analysis
techniques deal with non-stationarity.

For realism, we learn the simulator’s parameters from our
production data as follows. We draw from a Bernoulli dis-
tribution to determine if the machine is suffering from a
temporary outage or a failure. For temporary outages, we
draw 7 from a Beta distribution with support in [0, 10]. We
create six scenarios by clustering recorded failures at differ-
ent racks within a data center, and using the distribution of
their recovery times in the full feedback data to learn the
parameters for the Bernoulli and Beta distributions for each
cluster. The clusters correspond to different probabilities of
recovery, and longer/shorter tails in recovery time. We learn
one such generator for each of the four splits in the trace
described in §4.2.1. By switching from one generator to the
next, we simulate a change in the environment. Policies are
initially trained on full feedback data, and then periodically
retrained using a trailing window of the last 20k data points

using only the data they observe. They are unaware of envi-
ronment changes other than through the data. Policies with
exploration use an exploration rate of 10%.

Figure 8a shows the average downtime (cost) of the best
performing baselines in Figure 7a: IPS, Direct Method, and
v1. Environmental changes are shown by the three vertical
dotted black lines. The Omniscient lines show the perfor-
mance of an omniscient policy based on full-feedback data
started at the beginning of each period. These are upper
bounds on performance in their starting environment, but
often degrade after environment changes.

Once again, deploying a policy without exploiting implicit
feedback (i.e., IPS) or not accounting for implicit feedback
properly (i.e., Naive Implicit) leads to poor performance that
is often closer to the v0 policy than to the omniscient one.
The implicit feedback available to SAYER allows it to out-
perform the IPS-based policies by 3-18%, depending on the
environment. SAYER is also competitive with the Omniscient
policy, increasing downtime by only 3%, a relatively low cost.
Finally, the v1 policy performs competitively in the first and
second environments, but significantly underperforms in the
third environment with a downtime of 7 minutes, demon-
strating the need for periodic retraining.

Figure 8b shows the accuracy of counterfactual perfor-
mance estimation on a single policy, using data generated by
different deployed policies from the previous data window.
The bias of Naive Implicit again leads to an underestimate
of up to 3x. Compared to IPS, which is also unbiased, SAYER
provides a significant reduction in variance (as shown by the
bootstrap bars), allowing accurate estimation within smaller
time windows. This potentially reduces the time that stale
models remain deployed in production environments.

4.3 Application II: Azure-Scale

Azure-Scale serves user requests to scale up a group of VMs
by a given amount. When a user requests k new VMs of
a given type, to ensure the timely creation of these VMs,
Azure-Scale over-allocates by creating k+a VMs, and returns
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the first k that are created. In this application, the goal is
to trade off the resource cost of over-allocating VMs with
the completion time ¢ of a requested group of VMs. The
over-allocation a should be minimized to save resources,
while being high enough to meet Service Level Objectives
(SLOs) such as low median response time (MRT). The default,
conservative over-allocation policy (v0) deployed in Azure-
Scale always chooses a = 0.2k (or a = k when k is small, i.e.
< 4), and any over-allocation is capped to 0.2k (or k when k
is small, i.e. < 4).

We use two possible cost metrics that capture this trade-
off in Azure-Scale. The first cost trades off meeting the MRT
SLO with the over-allocation cost, formalized as:

costl = 1{t > MRT} - min(t — MRT, max_cost) +y - a

where MRT is the SLO objective (we use 80 sec), t is the cre-
ation completion time of the group of VMs, max_cost bounds
the cost for stability (we use 100s), and y is a factor to put ¢
and a on the same scale (we use 13). Cost1 penalizes actions
that miss the SLO (¢t > MRT) linearly up to max_cost, while
each over-allocated VM “costs” y. This cost enables implicit
feedback in two forms. First, observing an over-allocation
of a VMs and their completion times gives feedback for all
over-allocations a’ < g, since t is known for every a’ (but not
for any a” > a). Second, full feedback for every a is given
if t < MRT, since the first term of the cost that includes t is
removed by the indicator function.

We also use an alternative cost function with less implicit
feedback:

cost2 = min (max_cost, 0.99 - max(0, t — MRT)
+0.01 - max(0, MRT —t) +y - a).

Here, both missing the MRT and meeting the MRT by too
much are penalized, though with a smaller coefficient for
meeting the MRT. This cost receives less implicit feedback,
because the information of larger actions is not revealed
even when t < MRT, since we do not observe completion
times for VMs we never created. The only way to get full
feedback is to choose the highest possible action.

To enable experimentation with different over-allocation
policies, we build a prototype which mimics the functional-
ity of Azure-Scale, using the public interface of Azure. The
prototype receives requests for k VMs of a given type, de-
cides on an over-allocation number (a), and issues k + a VM
creations to Azure. It returns a completion time that is the
k" smallest VM creation time to the user. Unlike the produc-
tion system, however, it also waits for all k + a requests to
complete and logs each completion time before deleting the
additional VMs. We use our prototype to replay an Azure-
Scale production trace spanning 4 weeks, and containing
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Figure 9: Assumption verified: no significant influence
of number of requested VMs on the completion times.

43821 requests made by a small subset of users to a North-
American datacenter. Requests are capped at 100 new VMs,
but most requests are small (1 to 8 VMs). The trace logs the
request’s timestamp, type of VM, and the over-allocation
determined by the currently deployed policy.

Observed potential outcomes assumption. Before we
dive into the results, we first validate SAYER’s observed po-
tential outcomes assumption. In the context of Azure-Scale,
implicit feedback could be unreliable if the system batches
requests before starting allocations, and uses an allocation
logic that depends on batch size. We designed a randomized
experiment to empirically verify that the completion time of
k VMs out of the first k + a’ is the same whether we request
k+a ork+a,a> a. We sent 1000 requests each with a
randomly assigned total number of VMs (k +a € [1, 100], the
maximum in our trace) and VM type, and analyzed the im-
pact of the total requested number on the completion time of
k VMs out of k +a’. Figure 9 shows a representative example,
for k = 4,a’ = 0. For each value of k and a’, we run a statisti-
cal test using a regression, and find no significant influence
of total number of requests on the completion times: the
slope of the regression is close to 0, and the p-value is high,
meaning that the data is compatible with our assumption.

4.3.1 Trace-driven simulation

We start by collecting a full feedback trace using our proto-
type, and split the resulting data into a training and testing
set, each containing two weeks worth of data. We perform
both policy optimization and counterfactual evaluation to
test SAYER. The key observations are as follows, which largely
corroborate the takeaways from Azure-Health.

Impact of implicit feedback. To showcase the different
values of implicit feedback, we use SAYER to train two poli-
cies, one to optimize cost1 (providing more implicit feedback)
and the other for cost2 (providing less implicit feedback), re-
spectively. We train each policy using the log generated from
a common Naive Implicit policy, with 10% of exploration, on
increasing amounts of training data from the first split, and
evaluate their performance with full feedback on the second
split. Figure 10 shows that Policy1, by leveraging implicit
feedback, improves faster and performs better than Policy2
over the same amount of training data, showing 8.4% and
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Figure 10: Benefit of Implicit Feedback: Policy1
trained on costl (more implicit feedback) performs
better than Policy2 trained on cost2 (less implicit feed-
back), when evaluated on either cost metric.
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Figure 11: Counterfactual Evaluation of Policy2 (cost1,
cost2, completion time, MRT meet rate) shows that it
can be used to estimate different metrics than the one
optimized by the policy.

6.3% better performance in terms of costl and cost2 when
all the training data is used.

Benefits of implicit exploration and feedback. Figure 11
shows the counterfactual analysis error when using different
approaches to evaluate Policy2’s performance. Each colored
dot represents a different counterfactual estimator, but this
time each box shows results for a different metric to evaluate
(costl, cost2, average VM creation time, and MRT meet rate).
This shows that counterfactual evaluation can be used to
evaluate multiple practically useful metrics, and not just
the cost optimized by the policy. We can see that compared
to Naive Implicit (using implicit feedback in a biased way)
or IPS (unbiased but without implicit feedback), SAYER’s
estimates are unbiased and have a standard deviation only
half that of the IPS estimator (10 sec vs 20 sec), showing
the value of both implicit feedback (compared to IPS) and
exploration (compared to Naive Implicit).

Benefits of Implicit estimator. Finally, Figure 12 shows
results for policy training. SAYER outperforms policies trained
by Naive Implicit, Direct Method, and IPS, by 7.0%, 4.1%, and
4.1% respectively. To emphasize the value of our Implicit
estimator, we also add a policy trained exclusively on explo-
ration data (Exploration Only in Figure 12). Such an approach
is unbiased, but it cannot use datapoints in which the data
collection policy did not explore. This data reduction yields
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Figure 12: Sayer vs Baselines (data-driven simulation
in Azure-Scale).
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Figure 13: Live deployment (A/B/C tests). Randomly

assigning each request to v0, Naive Implicit, or SAYER.
SAYER consistently has the lowest cost.

a policy that is 3.1% worse than SAYER, showing the value of
our Implicit estimator leveraging every datapoint.

4.3.2 Online evaluation using live deployment
Finally, we show the end-to-end performance of SAYER in
a live deployment of our prototype, compared to a Naive
Implicit-trained policy, and the default policy (v0). Such an
evaluation is not as simple as just deploying each policy in
turn in the prototype, because the strong temporal patterns in
creation times within Azure prevent comparisons between
different time periods. Consequently, we add support for
simultaneously deploying policies and randomly assigning
each request to one of them, in an A/B/C test. This online
testing framework allows SAYER and other policies to be
deployed in the same environment and compared on live
traffic at the same time. Both policies are initially trained
using the same one week of full-feedback data. During the
experiment, we replay our workload trace. Every 24 hours,
each policy is retrained on a 1-week trailing window of data.

Figure 13 shows the performance of all three policies over
time. At the beginning of the experiment, the Naive Implicit
policy and SAYER are both trained on full-feedback data and
perform equally well. Over time, the Naive Implicit-trained
policy is retrained on biased data and performs unevenly.
SAYER, on the other hand, consistently outperforms both the
v0 and the Naive Implicit-trained policy.

5 Related work

SAYER attempts to bridge the gap between recent theoretical
work on counterfactual evaluation and training in machine
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learning, and the challenge of evaluating and improving poli-
cies in systems. We focus on the most related work from both
sides, and point the reader to §2.3 for a broader overview.

Counterfactual evaluation. SAYER builds on Inverse Propen-
sity Scoring (IPS) estimators, a classical technique from the
1950s [16, 36]. Recent work extends IPS to contextual bandits
[11] and incorporates inherent structure for better data effi-
ciency [7, 27]. These techniques have generally been applied
to advertising and news articles [6, 21, 31]. SAYER adapts
these techniques to design a methodology for a broad class
of system policies, and integrates it into their lifecycle.
SAYER leverages implicit feedback to boost the efficiency of
counterfactual estimation. Implicit feedback has been studied
using feedback graphs [2, 33], but these works assume a fixed
feedback graph and use it to optimize one policy online. In
contrast, SAYER can counterfactually evaluate many policies,
even when the feedback graph is outcome-dependent.
Sayer’s implicit feedback can be viewed as a variance
reduction technique over IPS. Similarly, Doubly Robust (DR)
estimators can also be used to reduce the variance of IPS, by
combining a model-based predictor to “fill the gaps” when
information is missing [10]. DR estimators are orthogonal to
our contribution and can be applied to both SAYER and IPS.

Data-driven modeling in systems. While most work in
systems is evaluated on real testbeds or deployments, trace-
driven evaluation is often used to evaluate new policies at
scale (e.g., in server/path selection [18, 32], video bitrate
adaptation [19, 34, 45], and MapReduce scheduling [26]).
Data-driven models/simulators were developed for “what-if”
analysis in specific systems settings (e.g., web service [20],
CDN server selection [39], end-to-end adaptation perfor-
mance [37], and streaming video QoE modeling [25]). Similar
data-driven performance modeling is also used to predict
the best configuration for a workload based on a few sam-
ples [48]. However, it is inherently difficult for these analyses
to faithfully capture all relevant details (including confound-
ing factors [37]) of a large-scale system [14], to simulate
or build an analytical model that precisely predicts perfor-
mance of any unobserved actions [15]. In contrast, SAYER
focuses on a class of decisions that exhibit independence
properties, and uses tools from statistics/machine learning
to enable unbiased evaluation without the need for mod-
eling. Recently, [4, 29] suggested the potential of such an
approach, but fall short of addressing any systems challenges
or developing any usable methodology.

RL and Online Learning in systems. A closely related
body of work uses (deep) reinforcement learning (e.g., [1, 13,
30, 34, 40, 41, 47]) or online learning (e.g., [8, 9]) in systems
optimization. It optimizes a single policy online by continu-
ously interacting with the environment. Typically, the data
collected by such a policy yields partial feedback that can
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only be used to evaluate policies that are similar to it. SAYER
instead focuses on a class of techniques that enable unbiased
counterfactual evaluation of any policy. Although our evalu-
ation focuses on iterative model updates (which are common
in production systems), we note that SAYER can also update
a policy online as new data arrives.

6 Discussion

We applied SAYER’s counterfactual evaluation and training
methodology to two systems: Azure-Health and Azure-Scale.
These examples illustrate the value of counterfactual evalua-
tion in systems, as well as the prevalence of implicit feedback
in systems that make threshold decisions. They also illus-
trate the manual effort required to apply SAYER: specifically,
SAYER relies on the system designer to define an event E
that captures the available implicit feedback, and compute
its probability P(E). Though nontrivial, defining this event
follows naturally from reasoning about when cost feedback
is known for the candidate policy’s action, based on the
data collected by the deployed policy. For example in Azure-
Health, the only case when feedback is not available is when
the deployed policy’s action causes a timeout and the candi-
date policy chooses to wait even longer; E is thus defined as
the opposite of this event. After deriving E for Azure-Health,
it was relatively straightforward to do the same for Azure-
Scale. Thus, in our experience, the manual effort required
for a new application is reasonable.

As discussed in §3.1, SAYER applies to system decisions
that satisfy certain independence properties (e.g., the same
ones required by contextual bandits and IPS). As such, it
does not apply to system policies that maintain long-term
state, or whose decisions interact in complex ways. Defining
appropriate events and costs for individual actions in such
settings is a challenging problem for reinforcement learning.
It is an interesting open question if the ideas from SAYER, and
in particular our techniques for leveraging implicit feedback,
can be extended to more general RL to support these settings.

SAYER focuses on one-dimensional (single-parameter) de-
cisions due to two limitations in our approach. The first
is our reliance on existing RL techniques, which do not
cope well with large or complex action spaces, mainly be-
cause they are unable to explore these spaces efficiently. A
multi-dimensional action space grows exponentially in the
number of dimensions: e.g., even a 2-parameter decision
(x € X,y € Y) where |X| = |Y| = N has an action space of
size N2. The second limitation is that it is unclear if implicit
feedback can be obtained in multi-dimensional decisions. For
example, if we take the decision (x, y), does that mean that
we receive feedback for all actions (< x, < y)? Clearly this
depends on the relationship between x and y, which may
be complex. Extending Sayer to multi-dimensional action
spaces is an interesting direction for future work.
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