
Whose Cache Line Is It Anyway?

Operating System Support for Live

Detection and Repair of False Sharing

Mihir Nanavati Mark Spear Nathan Taylor Shriram Rajagopalan Dutch T. Meyer
William Aiello Andrew Warfield

Department of Computer Science, University of British Columbia

{mihirn, mspear, tnathan, rshriram, dmeyer, aiello, andy}@cs.ubc.ca

Abstract

As hardware parallelism continues to increase, CPU caches

can no longer be considered as a transparent, hardware-level

performance optimization. Cache impact on performance, in

particular in the face of false sharing, is completely depen-

dent on the software that is executing. To effectively sup-

port parallel workloads on cache coherent hardware, the op-

erating system must begin to treat the CPU cache like other

shared hardware resources, and manage it appropriately.

We demonstrate a prototype example of such support by de-

scribing Plastic1, a software-based system that detects, di-

agnoses, and transparently repairs false sharing as it occurs

in running applications. Plastic solves two challenging prob-

lems. First, it is capable of rapid, low-overhead detection

and diagnosis of false sharing in unmodified, running appli-

cations. Second, it resolves identified instances of false shar-

ing by providing a sub-page granularity memory remapping

facility within the system. Our implementation is capable of

identifying and repairing pathological false sharing in under

one second of execution and achieves speedups of 3-6x on

known examples of false sharing in parallel benchmarks.

1. Introduction

Cache contention on modern CPUs can lead to performance

collapse. This collapse is entirely workload dependent and

cannot currently be mitigated by the hardware providing the

1The title of our system is an analogy to the concept of neuroplasticity: the

ability of the brain to adapt to changes in environment and behaviour over

the course of its lifetime.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

caching. As a result, there exist applications that perform ter-

ribly on modern CPUs because they contend for cache lines.

Not only are existing systems unable to correct this, they are

also unaware of the very existence of such contention.

In modern CPUs, the design of processor caches is com-

plicated by two properties. First, rather than increasing fre-

quencies, processors are becoming more parallel. Second,

cache coherence is still broadly held as a necessary property

of CPU implementations. Increasing parallelism means that

there are more threads operating on memory at once, while

coherence demands that all threads see a single, consistent

view of that memory.Where concurrent accesses to the same

cache line involve one or more writers, exclusive access is

required and the resulting cache coherence protocol interac-

tions necessitate expensive, synchronous notifications across

multiple cores and even physical sockets in the system.

Avoiding cache line contention should be treated as a sys-

tems problem. The cache, after all, is a shared performance-

critical resource and software layers such as the VMM, OS,

and language runtime occupy a useful vantage point from

which to mediate access. Unfortunately, identifying, under-

standing and resolving cache contention is a challenging task

on modern CPUs. Once false sharing is identified, resolving

it correctly requires a fine-grained remapping mechanism

to “split” a cache line in a manner that allows concurrent

threads to achieve non-contending access – a facility that is

not provided by page-granularity MMU hardware.

The VMM-based prototype system described in the remain-

der of this paper achieves both of these goals. First, through

a combination of hardware performance counters and mem-

ory virtualization, we present a false sharing detection sys-

tem that is able to rapidly detect false sharing and identify the

specific, relevant byte-level regions of data that are contend-

ing. Second, to resolve the contending accesses identified

by our detector, we use both hardware page protection and

binary instrumentation to introduce a fine-grained memory

remapper. This facility extends conventional virtual memory

support, which works at a page granularity, with a byte-level

remapping facility. Using this interface, the system can elect

to transparently move contending data structures in virtual

memory into new locations in physical memory while code

actively executes on the original virtual addresses.

We demonstrate that it is possible to detect and repair false

sharing in a manner that works on existing hardware and ap-

plies to existing application binaries. Our detection system

has sufficiently low overheads as to be deployed in both de-

velopment and production environments, while the remap-

ping engine transparently and efficiently redirects memory

accesses, allowing data structures to be arbitrarily removed

from the middle of a page and placed elsewhere in mem-

ory. The resulting system is capable of identifying and fixing

false sharing in applications in under a second of execution,

resulting in a significant speedup for concurrent workloads.

2. Cache Coherence and Scalability

Cache coherent systems are parallel computing systems

which, despite the presence of private, per-core caches,

present a single, unified view of memory to the entire system

at any given point in time. The benefits of such consistent,

shared memory, especially in parallel programming, come

at a scalability cost to the extent that several highly-parallel

architectures [19, 38] and OSes [2] have explored system de-

sign in the absence of cache coherence. Still, many computer

architects [26] and systems designers [7] believe that exist-

ing systems can, in fact, continue to scale to much greater

degrees of parallelism.

Cache Coherence and the x86: As a dominant example

of general-purpose CPU design, Intel’s x86 processor cache

architecture has remained relatively unchanged since the re-

lease of the Nehalem microarchitecture in 2008. Coherency

is maintained using MESIF, an extension to the popular

MESI state protocol [33]. Each cache line has a state associ-

ated with it, while the inclusive L3 acts as a directory [17],

both to maintain coherency amongst on-socket cores, as well

as service requests from other sockets. Simultaneous reads

are supported by allowing multiple copies of the same cache

line to coexist in “Shared” state. Any write, however, causes

the requesting core to become the owner of a cache line,

which is put in “Exclusive” or “Modified” state in its L1,

while all other copies are invalidated.

Subsequent requests from other cores are serviced by the on-

socket L3, which checks the availability of the line. For lo-

cal lines, the resulting flushes of modified data from private

cores are snooped for modified values, which are then writ-

ten back before completing the request. Requests for remote

lines are forwarded to the appropriate socket via the Quick-

path Interconnect (QPI) [23].

Accesses to modified cache lines force a write-back to a lo-

cation accessible to the requesting core: contention amongst

struct {

 pthread_t tid; POINT_T *points;

 int num_elems; long long SX;

 long long SY; long long SXX;

 long long SYY; long long SXY;

} lreg_args ;

Despite di�erent heap organizations and structure padding,

both 32- and 64-bit binaries exhibit false sharing.

Allocation of lreg_args array on 64-bit binary

Allocation of lreg_args array on 32-bit binary

0 63 cache line n+1 127cache line n

0 63 cache line n+1 127cache line n

lreg_args[0]

SX

SX

t
i
d

6
4

-b
it

3
2

3
2

p
o
i
n
t
s

n
u
m
_
e

S
X

S
Y

S
X
X

S
Y
Y

S
X
Y

S
X

S
Y

S
X
X

S
Y
Y

S
X
Y

t
i
d

t
i
d

p
o
i
n
t
s

n
u
m
_
e

S
X

S
Y

S
X
X

S
Y
Y

S
X
Y

tid

tidp

pnum

numSY

SY

SXX

SXX

SYY

SYY

SXY

SXY SX

SX

tid

p

num

SY

SY

SXX

SXX

SYY

lreg_args[1]

lreg_args[0] lreg_args[1] lreg_args[2]

allocation

metadata

a.
m

.

{

{
{

Figure 1. False sharing in the linear regression benchmark.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28 32

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

R
e
la

ti
v
e
 t
o
 L

in
e
a
r

S
p
e
e
d
u
p

Number of Cores

Linear Regression w/ False Sharing
Linear Regression w/o False Sharing

Figure 2. Effect of increased parallelism on performance.

on-socket cores updates the L3, while cross-socket cores are

forced to write-back to main memory. As a result, latencies

of accesses to contended memory vary significantly depend-

ing on the exact physical topology of the cores involved [28].

True and False Sharing: Cache coherent architectures

optimize for parallel workloads that tend to have large

amounts of shared read-only data and smaller amounts of

private mutable state. Cache lines with multiple accessors,

at least one of which is a writer, experience expensive co-

herence misses as the coherence protocol must negotiate

between cores in order to preserve consistency. True sharing

occurs when concurrent accesses are to a single, shared data

structure, such as a lock or reference count. False sharing

occurs when independent data structures happen to reside

on a single cache line; here, the workload matches the as-

sumption of shared reads and isolated writes, but the coarse

granularity of isolation results in unnecessary contention.

The Phoenix [35] parallel benchmark suite’s linear regres-

sion test is a popular example of false sharing [24, 40]. Fig-

ure 1 shows the lreg args structure responsible for false

sharing. An array of thread-indexed structures store inter-

mediate per-thread state and are accessed in a tight loop

causing a high degree of false sharing. Figure 2 compares

the program’s scalability against a version modified to elim-

inate false sharing. While the modified version scales nearly

linearly, adding additional cores to the original version of-

ten makes it slower, even in terms of absolute time. Another

access pattern causing false sharing, seen in the Linux ker-

nel [7], has a single frequently updated field in a structure

surrounded by read-mostly data.

Besides the workload, false sharing depends on many dy-

namic properties in a system. Figure 1 shows the same

source file compiled as both 32-bit and 64-bit binaries. De-

spite identical source and identical cache organization, the

nature of false sharing is different: one case results in a 52-

byte structure that tiles poorly across cache lines, whereas

the other produces an ideally sized 64-byte structure, but

then misaligns it because of allocator metadata.

False sharing is still a problem in today’s systems: False

sharing has long been recognized and studied as a problem

on shared memory systems [6]. While compiler support can

help in some cases, it is far from universal.2 Many instances

of contention are properties of workload and simply cannot

be inferred statically. As evidence, recent years have seen

significant examples of false sharing in mature, production

software. False sharing has been seen in the Java garbage

collector on a 256-way Niagara server [11], within the Linux

kernel [7], and in spinlock pools within the popular Boost

library [10, 27]. Transactional memory relying on cache line

invalidations to abort transactions [18] also performs poorly

with false sharing [29]. These examples serve as the basis for

CCBench, the microbenchmark suite discussed in Section 6.

That false sharing occurs in mature software is an indication

not of a lack of quality, but rather that workloads leading to

contention are often not seen in development and testing.

3. Design and Architecture

The system described in this paper, called Plastic, provides

system-level support to dynamically detect and mitigate per-

sistent false sharing in unmodified application binaries. Plas-

tic is a software implementation of a byte-granularity mem-

ory remappingmechanism. It allows any arbitrary byte range

of virtual memory to be remapped from one physical loca-

tion in memory to another, while the target is still running.

Specifically designed to mitigate false sharing, it determines

the exact regions of virtual memory that currently exhibit

2 For example, gcc fixes false sharing in the Phoenix linear regression

benchmark (see Figure 1) at -O2 and -O3 optimization, while clang fails

to even at the highest optimization level.

Xen

Domain 0

(a.k.a user-level modules)

Guest Virtual Machine

Application

OS

Performance

counter monitoring

Guest page fault

registration list

Page fault handler

Unmodi!ed

Application

Balloon

Driver

Fault path on pages containing remapped data
Detection path and installation of new mappings

Code cache

Remapping data pool

FS Detector
Remapping

Engine

Remapping

rules

Figure 3. Plastic Architecture

contending accesses and then transparently remaps them

to physical addresses on independent cache lines. Our ap-

proach is inspired by the sort of virtual-to-physical address

remapping that is already possible with paging hardware, but

refines it to a sufficiently fine granularity as to mitigate con-

tention within a single cache line.

Modern x86 hardware does not support remapping at this

fine granularity. Plastic implements its own remapping sys-

tem in software: provided with a set of byte granularity

memory remapping rules, it applies them to a running sys-

tem using live binary instrumentation. When false sharing is

identified, Plastic creates a copy of the contending data on a

non-contended cache line and uses dynamic instrumentation

to redirect all accesses to that new location in memory.

Plastic is currently implemented on the Xen virtualization

platform [1], where it takes advantage of memory interposi-

tion capabilities that are relatively easy to extend. It is impor-

tant to emphasize that our approach is not specific to hyper-

visors: Plastic could be incorporated into an operating sys-

tem with equal benefit. We use the term “operating system”

in the title of this paper to emphasize the more general op-

portunity for this class of system support.

Processors mask access latencies using instruction pipelin-

ing and out-of-order execution, thereby significantly reduc-

ing the impact of false sharing when contending accesses are

separated by even a few hundred instructions. Plastic targets

applications where performance is materially impacted by

false sharing; typically, long running applications with high-

frequency, parallel accesses to memory. To be practically de-

ployable, it must function with low overhead, and detect and

mitigate false sharing quickly and efficiently without requir-

ing any changes to existing applications.

0x1000: Original 4K page

cache line-length region

contending data structures

“hole” -- area with overlaid
mappings

0x1700

0x170c

0x1730

0x1000: Original 4K page

0xf0000: Remapping data pool

0x1700

0x170c

0x1730

0xf1000: underlay page

0xf1700

0xf170c

0xf1730

0xf2000: isolated data

0xf2000

0xf2280

1. Detector reports two byte ranges
 with false sharing

Contention at: (addr, size)

(0x170c, 4), (0x1730, 8)

2. Detector requests remappings

remapper_isolate(0x170c, 4)

remapper_isolate(0x1730, 8)

3. Remapping rules installed

(0x1000, 0x70c) → (0xf1000)

(0x170c, 0x4) → (0xf2000)

(0x1710, 0x20) → (0xf1710)

(0x1730, 0x8) → (0xf2280)

(0x1738, 0xd1e) → (0xf1738)

0x1700

0x170c

0x1730

NA:
All accesses

result in a
page fault and

trigger
remapping.

Before remapping: After remapping:

Remapping allows

the original data

page to be composed

from multiple byte-

granularity regions.

Figure 4. Byte-granularity remapping allows some data to be transparently isolated on separate cache lines.

3.1 Architecture

Figure 3 shows Plastic’s architecture at a high level. The bulk

of the system resides in a user space tool running on a mod-

ified version of Xen. The hypervisor serves two purposes.

First, the machine’s hardware performance counters are ex-

posed to monitor coherence invalidations on individual pro-

cessor cores. Second, page protection interfaces are used to

interpose on memory accesses and to determine the exact

byte ranges involved in false sharing. Plastic’s execution in-

volves two main responsibilities: detection and remapping.

Detecting False Sharing: Detecting false sharing on x86

is a challenging task, especially given the constraint of im-

posing low overhead on the system. Plastic takes advantage

of hardware performance counters to detect memory con-

tention by monitoring coherence invalidation events, which

indicate multiple cores competing for exclusive ownership

of a cache line. Proceeding from this observation, it performs

a series of progressivelymore expensive refinements, but ap-

plies them to increasingly specific regions of execution. This

approach, described in detail in Section 4, allows Plastic to

quickly detect false sharing and refine the diagnosis down to

specific byte-granularity regions of contended memory.

Remapping Cache Lines: On current x86 hardware, a

page of memory – which is the smallest unit available to

MMU hardware for remapping memory – contains 64 64-

byte cache lines. Isolation requests from our false sharing

detector are smaller regions within individual cache lines.

Plastic achieves fine-grained remappings as illustrated in

Figure 4. Isolation requests from the detector specify small

regions of memory that should be placed on an isolated

cache line. The remapper responds to isolation requests by

providing sufficient remapping rules to describe the entire

page containing remapped data. The result is that the page

becomes a composite of one or more small isolated data

ranges that are mapped on top of an underlay page. All of

these data components reside in the remapping data pool,

and the original page of virtual address space is marked as

“No Access”, resulting in faults on any attempt to read or

write data through that range of virtual memory.

To make remapping efficient, demand faults on access to

the original page result in the analysis and modification of

accessing code to interact directly with the remapped data.

Guard conditions in this modified code redirect only refer-

ences that interact with remapped data, and leave other ref-

erences interacting with original addresses in memory. By

directly altering the accessing code, Plastic avoids expen-

sive faults on future accesses while efficiently isolating the

contending data onto independent cache lines.

Plastic’s remapper takes advantage of a design property that

is almost never available to dynamic instrumentation sys-

tems: the implementation need not be complete with regard

to instruction set semantics. Plastic is free to modify code

wherever capable of improving performance, however, as

our goal is strictly to improve performance in the system, the

option always exists to do nothing. In cases where Plastic is

unable to safely or efficiently remap data ranges, it restores

the data to the original page by copying back the composite

regions, invalidates all active remappings for that data, and

allows execution to continue against the original location.

This places both the code and data back in the original and

unmodified state. This observation, and the fact that page

protection on the original data ensures that remapping cov-

ers all accesses to the remapped data from any code in the

system, allow Plastic’s design and implementation to pursue

individual piece-wise optimizations based on workloads and

access patterns that demonstrably benefit from remapping.

Plastic requires the guest OS to maintain both the code and

data cache regions within the virtual address space of the

application. This is the only requirement of Plastic on the

guest and is achieved as an extension of the balloon driver, an

in-guest memory management driver commonly installed in

VMs. Under Windows, similar functionality can be obtained

by the use of user-space AppInit DLLs.

4. Detection Methodology

Identifying false sharing typically requires a costly analy-

sis of memory access patterns and to model those inter-

actions within the cache hierarchy [16, 22, 40]. As shown

in Figure 5, Plastic takes a multi-stage, sampling-based ap-

proach [9] to avoid these costs. Using a series of progres-

sively more detailed (and consequentially higher-overhead)

filters minimizes the impact of continuous detection and fo-

cuses the higher cost analysis on data likely to exhibit false

sharing, based on information collected in earlier stages.

Starting from the left of the pipeline, we progressively re-

fine the results, and begin by observing the presence of an

abnormally large number of coherence invalidations using

performance counters. We then isolate the pages where con-

tention is occurring, before sampling memory accesses for

short periods with emulation to find the precise regions of

memory responsible for the contention.

4.1 Performance Counter Monitoring

Inputs: Running System

Outputs: Degree of contention in the system

Performance counters are special registers that store records

of microarchitectural events, such as cache misses or branch

prediction success rates, and are traditionally not used by

the operating system and software. Acting as free running

counters, they can be used to investigate the performance

characteristics of the system with low overhead. Modern

processors have events to count messages at every level of

the cache hierarchy, including the invalidationmessages sent

from one core to another due to contended accesses.

While coherence invalidations indicate the presence of false

or true sharing, it is hard to characterize its impact on per-

formance solely using an absolute count. This is because the

performance impact of every invalidation is not equal: inval-

idations caused by off-socket cores require data to be fetched

from main memory and are much more expensive than those

from on-socket cores. However, since invalidations essen-

tially stall a core until the data is fetched, contending on-

socket cores can issue more requests, and hence cause more

invalidations, per second than off-socket cores. Additionally,

out-of-order execution and pipelining allow processors to

hide the latency of such invalidations with useful execution.

Rather than using invalidation counts in isolation, Plastic

quantifies their effect on performance by calculating the

number of invalidations per instruction executed. As sug-

gested in Intel’s performance manuals, values over a third of

a percent signify potentially high degrees of contention [20].

Invalidations are counted using the SNOOP RESPONSE HITM

event, which counts the number of snoop requests to a par-

ticular core that “hit” a modified value in a private cache that

now needs to be written back to maintain coherency. Plastic

uses per-guest virtualized counters within Xen to only count

invalidations that occur during guest execution. While cache

line granularity contention does not distinguish between true

and false sharing, an absence of such contention signifies the

lack of significant false sharing in the system.

4.2 Page Granularity Analysis

Inputs: Presence of high cache line contention

Outputs: Contended physical pages

Once cache line level contention is observed, true and false

sharing are distinguished by determining the exact regions

of memory accessed. Rather than instrumenting all memory

accesses in the system, Plastic first determines contended

pages by leveraging hardware page protection mechanisms.

As a hypervisor capable of running several unmodified

guests simultaneously, Xen virtualizes memory and provides

each guest the illusion of a contiguous address space. Hy-

pervisor managed page tables perform an additional level of

translation, either in software via shadow page tables or in

hardware with Extended Page Tables (EPT) or Nested Page

Tables (NPT) on Intel and AMD processors respectively.

Traditionally, Xen has a single set of hardware page tables

per guest. Plastic extends these page tables to be per-core,

each capable of having differing permissions for the same

page. Using these tables to determine pages shared across

cores is fairly trivial. Initially, all pages are set to “No Ac-

cess” in all the private per-core page tables. Any subsequent

access causes that core to fault, which promotes the per-

missions in its private page table and records the page and

access-type in a per-core bitmap. Operating systems can per-

form similar analysis using per-thread page tables [3, 24].

Plastic periodically resets page permissions to determine the

pages accessed by every core over several epochs. Since con-

tended pages require at least one writer and one or more

other readers or writers, the list of such pages for each sam-

pling epoch is the intersection of the write bitmap of each

core with the access bitmaps of all other cores. Contended

Coarse-grained

MMU-based con�ict

Analysis (§4.2)

Fine-grained MMU and

emulation-based

Con�ict Analysis (§4.3)

Performance Counter

Monitoring (§4.1)

“Is there cache line

contention now?”

“What physical pages

are contended?”

“What bytes and operations

are responsible?”

Contention Diagnosis

and Remapping Rule

Generation (§4.4)

“What ranges of memory should be

remapped toresolve contention?”

Figure 5. The stages of detecting and diagnosing cache contention.

Unaccessed

Read Only (RO)

Read Write (RW)
(exclusive)

Read Only (ROS)
 (shared)

Read Write (RWS)
 (shared)

R

R

R/W

R/W

R/W

R
R

(other accessor)

(o
th

er accesso
r)

(other accessor)

W

W

W

W

(same accessor)

(same accessor)

(sa
m

e
 a

c
c

e
sso

r)

Figure 6. Sharing status of a byte in the access log.

pages, however, need not signify cache line contention since

both thread migrations and non-overlapping heap objects on

the same physical page could also be responsible.

4.3 Byte Level Access Analysis

Inputs: Contended physical pages

Outputs: Accessed bytes alongwith the identity of accessors

Analyzing memory accesses at a byte granularity requires

recording every memory access. Plastic uses page table per-

missions to force a page fault on any access to a contended

page; the fault handler restores these permissions before

returning to the guest, while simultaneously setting up a

single-step breakpoint to force a trap as soon as the instruc-

tion is retired. At this point, permissions are again reset, ef-

fectively forcing every memory access on that page to fault,

where it is logged for further analysis.

Access patterns, delineated on a per-core basis, are not nec-

essarily good indicators of sharing since migrating threads

may access the same regions of memory from different

cores. Distinguishing accesses at a thread level requires

some knowledge of how threading libraries identify dif-

ferent threads; for instance, since most threading use the

fs(x86 64) or gs(x86) segment registers to select the

descriptor for the Thread Local Storage (TLS), Plastic sim-

ply logs the descriptor value as a thread identifier.

4.4 Remapping Rule Generation

Inputs: Byte level access log for contended pages

Outputs: Remapping rules for the page

Generating remapping rules involves identifying contended

cache lines by classifying individual bytes according to the

number of accessors and the access type. Plastic parses the

entire byte-level access log and assigns one of the states in

Figure 6 to each byte. Contended cache lines have multiple

accessors with at least one writer (RW or RWS bytes).

During rule generation, memory regions within contended

cache lines are grouped according to accessors. Multiple

such groups are isolated from one another, while the bytes

within the same group are remapped together. Groups with

modified bytes (RW or RWS) are remapped to the isolated

page, while the others are remapped to the underlay page.

4.5 Contention Verification and Adaptation

As a dynamic property, false sharing can evolve over time

and requires constant monitoring and adaptation. Once the

remapping rules are generated and sent to the remapping en-

gine, the detection engine returns to monitoring performance

counters for any contention in the system. Any detected con-

tention triggers the entire detection pipeline which generates

additional remapping rules as and when required.

Short lived false sharing may trigger detection and then sub-

side before the actual remappings are applied. To avoid such

scenarios, Plastic re-samples performance counters before

remapping. While not guaranteeing that the previously de-

tected false sharing exists, this ensures that some contention

still exists before proceeding with the remappings.

5. Memory Remapping

Mitigating false sharing involves transparently and safely

remapping all accesses to falsely shared regions of mem-

ory onto distinct cache line isolated locations. Plastic en-

forces such remappings with a combination of hardware-

based page protection and dynamic binary instrumentation.

The remappings generated at the end of the detection pipeline

only describe regions of contended memory without any

mention of the corresponding accessors – in other words,

they indicate what memory regions are to be remapped, but

not where, in code, these remappings need to be applied. In

order to detect all accessors, Plastic revokes access permis-

sion to contended pages and registers itself with the page

fault handler for the entire lifetime of the remapping. Mem-

ory accesses are redirected using dynamic instrumentation

by “correcting” the accessing instruction.

Remapping rules
A:(0x170c,0x04) → (0xf2000)

B:(0x1710,0x20) → (0xf1710)

Faulting instruction
mov (%rsi), %rdx

Instrumented block in code cache
 push %rsi

gA: cmp 0x170c, %rsi ; Guard A: Range check accessed

 jb gB ; address against upper and

 cmp (0x170c + 0x04), %rsi ; lower bounds. Jump to next

 ja gB ; guard if outside the range.

 sub (0xf2000 - 0x170c), %rsi; Guard activated: remap access

 jmp inst ; Exit the guard ladder

gB: cmp 0x1710, %rsi ; Guard B

 jb inst

 cmp (0x1710 + 0x20), %rsi

 ja inst

 sub (0xf1710 - 0x1710), %rsi

inst:mov (%rsi), %rdx ; Original faulting instruction

 pop %rsi

 jmp 0xdeadbeef

Page fault: Run-time access
to memory (via %rsi pointer)
has been remapped. Transfer
control to the code cache.

Figure 7. Guard Condition for a Single Instruction

Despite modifying the instructions executed, Plastic ensures

that the semantics of the original code are preserved and the

program remains safe at all times: instrumented instructions

behave identically to the original with the exception of point-

ing to the remapped memory location.

5.1 Achieving Transparency

Plastic remaps arbitrary ranges of memory by redirecting

memory accesses within a live, executing binary without any

semantic knowledge of the program itself. While borrow-

ing and adapting techniques from existing instrumentation

and patching frameworks [4, 8, 25, 30, 31, 36], it does face

two significant challenges. First, instrumenting a live binary

cannot rely on any kind of load-time analysis; for example,

several instrumentation frameworks [8, 25] generate a con-

trol flow graph and translate the entire program into basic

blocks before executing it. Second, the kind of overheads

acceptable in developer-facing diagnostic tools [30, 31] are

not acceptable in performance-critical scenarios.

Plastic combines two techniques to apply the desired remap-

pings: fault driven redirection and guard conditions. Rather

than rewriting the original instruction stream, it maintains

a separate code cache with instrumented instructions. The

instrumentation, applied with the help of DynamoRIO’s [8]

disassembly library, modify the memory referenced by the

instructions while Plastic redirects execution flow in a way

that oscillates between the original code and the code cache.

Fault Driven Redirection: Plastic maintains a consistent

view of remapped memory for the entire system by redi-

recting every accessor to an instrumented version in the

code cache. Statically identifying all accessors to a region

of memory, however, is complicated, especially in the case

of an already executing binary. Furthermore, redirecting ex-

ecution using branches [36] is not possible on a variable in-

struction size architecture like x86 because adding a jmp or

call as a trampoline could overwrite subsequent instruc-

tions and leave the code in an inconsistent state.

Plastic avoids these issues by leaving the original code un-

changed and redirecting execution via faults on the data path.

By revoking access permissions to contended pages, it forces

any access to trigger a page fault and maintains a mapping

between the faulting instruction and the instrumented code.

Plastic then acts as a centralized dispatcher and redirects ex-

ecution to the code cache by updating the instruction pointer.

Redirecting execution via the fault path also has another ben-

efit: unlike code trampolines, instrumentation is restricted

to instances of an instruction that access contended data,

while other instances remain unchanged. This prevents cases

where all callers of a library function suffer from instrumen-

tation overhead, even when required only by a single caller.

Guard Conditions: When copied to the code cache, fault-

ing memory references are replaced by code that includes,

in addition to the original instruction, instrumentation to ap-

propriately modify the address referenced by the instruction.

Figure 7 illustrates an example of one such code block.

As such instructions may access different addresses depend-

ing on the context under which executed, updating the ref-

erence address to a fixed, remapped location is insufficient.

Instead, within the code cache, the instruction is preceded by

a “guard condition”, a set of checks similar to XFI [12].

Guard conditions verify that the memory referenced has

been remapped and update the address according to the cor-

rect rule. References not matching existing rules fall through

all the checks and execute the unmodified, original instruc-

tion, ensuring that program behaviour remains unchanged.

5.2 Optimizing Performance

Trampolining to the code cache via page faults is slow and

routinely hitting the fault path for every contended memory

access is several orders of magnitude slower than simply

allowing false sharing to exist. Plastic attempts to reduce

faults by instrumenting entire code blocks rather than single

instructions, whenever possible.

Almost all high-frequency, performance-impacting con-

tended accesses, even calls or inlined accessors, are wrapped

by loops. Instrumenting entire loops within the code cache

amortizes the fault cost over several iterations. The primary

exception to this case, i.e. high-frequency contended ac-

cesses in straight line code, is code that is called repeatedly

through asynchronous event injection: syscalls, interrupts,

and user-level equivalents such as signal handlers. Plastic

can be extended to optimize this case by instrumenting the

entire function and then rewriting function call sites [31].

Code blocks are instrumented by guarding memory refer-

ences to ensure that they are correctly remapped. These code

blocks terminate with a direct jmp back to the next instruc-

tion in the original code. Branch target offsets and rip-

start: cmp %rdx, %rcx

 jnz out

400826: mov (%rbx) %rax

 addq $0x1, %rax

40082d: mov %rax, (%rbx)

 dec %rcx

 jmp start

out: ...

startAC:cmp %rdx, %rcx

 jnz out

632926: guard A on %rbx

 guard C on %rbx

 mov (%rbx) %rax

 addq $0x1, %rax

632944: guard A on %rbx

 guard C on %rbx

 mov %rax, (%rbx)

 dec %rcx

 jmp startAC

startBC:cmp %rdx, %rcx

 jnz out

633226: guard B on %rbx

 guard C on %rbx

 mov (%rbx) %rax

 addq $0x1, %rax

633244: guard B on %rbx

 guard C on %rbx

 mov %rax, (%rbx)

 dec %rcx

 jmp startBC

Original Binary Specialized (A&C)

Code Cache

Specialized (B&C)

T
ra

n
sla

tio
n

 O
�

se
t In

d
e

x

T1

 (start, size) →(dest)

A:(f3000, 0x10) →(de1000)

B:(f3010, 0x10) →(de1080)

C:(f3020, 0x980)→(de2000)

T1

T2

T2

Fault on access to remapped memory.

Instruction cross-reference between

original and translated code.

Control !ows of threads 1

and 2 (T1 and T2) before

and after faulting.

Figure 8. Control transfer on access fault from original binary, to specialized blocks in the code cache

relative accesses are corrected to account for both the code

relocation and the added instrumentation instructions.

Identifying Code Blocks: To instrument an entire code

block, rather than an individual instruction, Plastic faces

the challenge of identifying block boundaries based only

on an instruction pointer lying somewhere within the block.

Fortunately, modern processors have the ability to track both

source and destination addresses for recently taken branches

using a facility called the Last Branch Record (LBR). Plastic

identifies blocks by searching this LBR at the time of a

fault for recent branches that move backwards in code and

describe an address range containing the faulting instruction.

Despite the simplicity of this approach, it has proven to be

very effective in practice: even with a typically 16-entry

LBR history, Plastic is able to identify loop boundaries that

effectively allows it to amortize the overhead of transferring

execution to the code cache. Faulting instructions within

hot code blocks cause the entire block to be instrumented

while other accesses are instrumented on a per-instruction

basis, preserving remappings for less-frequently accessors.

In the future, we anticipate extending Plastic to periodically

sample the LBR in the background to better detect nested

loops and loop-embedded function calls.

Specialized Code Blocks: As implied by Figure 7, mem-

ory references within the code cache require a guard condi-

tion for every applied remapping. This approach, especially

in the face of large numbers of mappings, is problematic:

threads typically access only a small subset of the remapped

data, similar to the example of adjacent private structures

in Figure 1, and forcing execution through a long ladder

of conditional guards increases the general-case overhead

of remapping. Even worse, a small number of “straggler”

threads may end up falling through all the guard conditions;

the corresponding increase in overhead delays the entire pro-

gram and loses the performance benefit for all other threads.

Plastic takes advantage of the locality of accesses within

threads by not instrumenting blocks to contain a compre-

hensive list of guard conditions. Instead, individual thread-

specific versions of a code block are generated to contain ex-

actly the guards necessary to handle the remapping of data

accessed by that specific thread. As a result, threads execut-

ing their specialized version evaluate as few conditionals as

possible and fault on accesses when an appropriate guard is

missing. This fault may then result in the generation of an

alternate block containing the necessary additional guards.

Transferring Execution: While transferring execution

from the original code to the code cache is trivial in the

case of a single instruction, entire code blocks pose two

problems to execution transfer. First, rather than transferring

execution to the start of the instrumented block, it has to be

transferred to the correct instruction within it. Second, for

multi-threaded applications, Plastic must safely migrate all

threads concurrently executing within that code block.

Plastic maintains mappings between the original code and

the code cache using the Translation Offset Index. During

page faults, it selects a specialized block with guards for

the faulting address and transfers execution to the instruction

corresponding to the faulting instruction in that block. The

offset index allows faults on any instruction in the original

binary to be appropriately redirected to the code cache. This

is important because at the time a remapping is applied, sev-

eral worker threads may be executing different instructions

within the code block being remapped.

Figure 8 illustrates this transfer for two threads, T1 and T2

that contend on independent, thread-specific data. T1 ac-

cesses data described by ruleA and triggers a page fault that

generates a specialized version of the code block with guards

for both rules A and C. The second guard is added because

it describes the common case of accesses to the remainder

of the original page. Meanwhile, T2 continues executing the

original code until it faults on a memory reference, in this

case one associated with rule B; Plastic then generates a

new specialized block for rules B and C, and transfers exe-

cution to it. In this regard, the combination of faults on data

access and offset index matching between the original and

specialized versions of code allow threads to be efficiently

and safely redirected to the suitable specialized version.

5.3 Safety of Instrumented Code

Plastic guarantees that applied code transformations do not

alter program functionality in any manner. To ensure this,

it performs extremely simple transformations: every faulting

instruction in the original code has an identical counterpart

in the code cache. Instrumentations simply modify the ref-

erenced addresses and invariants that hold for the original

execution also hold for the version within the code cache.

Plastic leverages the insight that, as a performance optimiza-

tion, it can afford to be sound, but not complete, with respect

to the instruction set. While systems providing strong secu-

rity guarantees [13, 39] have to contend with several corner

cases in x86, Plastic simply invalidates all the remappings

when it encounters instructions it cannot safely redirect.

Invalidating remappings is simplified by the fact that the

original code remains unchanged at all times. Data from the

split pages is merged back to the original which is then un-

protected. Execution transfer is mirrored from earlier – per-

mission to the split pages is revoked and Plastic transfers

accessors from the code cache back to the corresponding ac-

cessors in the original code.With both code and data restored

to their original state, execution continues unhindered.

Code Coverage: As discussed in Section 5.1, Plastic pre-

vents stray accessors from modifying the original data by

marking the page as “No Access” throughout the lifetime

of the remapping. Guard conditions ensure that accesses to

data lying outside the remapped region, even fromwithin the

code cache, do not get arbitrarily remapped.

Thread Safety: Plastic serializes handling page faults for

the data page and the subsequent generation of instrumented

code blocks. Such faults are infrequent, so serialization does

not significantly affect performance, while simultaneously

preventing race conditions due to concurrent accesses.

Leaked Pointers: Applications remain unaware of the

remapped data ranges and as such all accesses to these

ranges originate from within the code cache. Improperly

restoring register state, however, may reveal these ranges to

the original code. Such leaked pointers are dangerous: an ap-

plication may inadvertently manipulate them and attempt to

access undefined regions of memory. Plastic avoids leaked

pointers by immediately restoring the original memory ad-

dress after executing the faulting instruction.

Unsupported Instructions: Plastic invalidates existing

remappings on encountering memory references that it

cannot redirect. A list of several such instructions and

the difficulties involved in their redirection follows. While

workarounds for several of these instructions exist, they are

currently not implemented in Plastic.

1. Repeat Prefixed Instructions: Instructions like rep

movs and rep cmpsmay access several bytes of mem-

ory, spanning both remapped and non-remapped regions,

using a single instruction. Plastic cannot detect the ranges

of memory involved and redirect accesses just by modi-

fying the parameters prior to execution. Instrumentation

frameworks like Pin [25] explicitly convert such instruc-

tions into loops to overcome this issue.

2. Atomic Accesses: Memory accesses that straddle remap

regions cannot safely be redirected without changing the

instruction into a set of smaller granularity memory ac-

cesses. Examples of such scenarios include contiguous

bytes updated by independent threads, causing them to be

remapped to independent cache lines, that are later read

by a single atomic 32 or 64-bit read.

3. mov %rXx, (%rXx): Directly modifying instruc-

tions that write their address to their memory location

lead to leaked pointers as remapped addresses get written

back to memory. Such instructions can be redirected by

using an extra register to hold the original address which

is written to the remapped memory region.

4. Register Indirect Branches: Indirect branches, such as

jmp *%rXx and call *%rXx, accessing function

pointers tables located on protected pages need to be redi-

rected to the remapped pointer table. Once the branch is

taken, however, Plastic cannot restore the register to its

original value. Such branches can be replaced with rip-

relative branches referencing the remapped pointer table.

Lastly, there is the safety of the code cache itself to consider.

The code cache must reside in the address space of the appli-

cation and remain accessible at all times; its pages, however,

are marked as read-only to prevent modification from within

the application. While an application may attempt to jump

into the middle of a block to avoid the guards, there is little

value in this as it would only hinder the application itself.

Benchmark Progress

Time (ms)
0 1000 2000 3000 4000 5000 6000

R
e

c
o

rd
s

P
ro

c
e

s
s
e

d
(m

ill
io

n
s
)

0

100

200

300

400

500

600

Time (ms)
0 1000 2000 3000 4000 5000 6000

R
e

c
o

rd
s

P
ro

c
e

s
s
e

d
(m

ill
io

n
s
)

0

100

200

300

400

500

600

False sharing w/ plastic

Source−Fixed

Coherence Invalidations

Time (ms)
0 1000 2000 3000 4000 5000 6000

C
o

h
e

re
n

c
e

In
v
a

lid
a

ti
o

n
s

(t
h

o
u

s
a

n
d

s
)

0

100

200

300

400

Plastic Stages

PerfCount
Logging

Emulation
RuleGen

Faults

Figure 9. Linear regression running under Plastic.

6. Evaluation

Plastic is evaluated on a dual socket, 8-core Nehalem system

with 32 GB of memory. Each processor is a 4-core 64-bit

Intel Xeon E5506 with private, per-core L1 and L2 caches

and a shared, per-socket L3 cache. Plastic runs on Xen 4.2

with a Linux Dom0. All tests are run on an 8-core guest with

virtual processors pinned to the corresponding physical core.

First, we describe the detailed execution of a false shar-

ing workload under Plastic, followed by a discussion of the

memory overhead of the system. We then assess the perfor-

mance impact of remappings within a code block on other

callers of the same code block. Finally, we evaluate Plastic’s

performance across a range of different workloads, com-

piled with gcc 4.4.3 at the default optimization level.

Reported performance results are the average of twenty runs.

6.1 Functioning of Plastic

Detection Times and Execution under Plastic: Figure 9

represents execution of the linear regression work-

load discussed earlier running under Plastic and compares

it with that of a source-fixed version of the same program.

Along with total benchmark progress, coherence invalida-

tions are also shown for the version with false sharing.

As the workload starts it immediately causes a signifi-

cant number of coherence invalidations; correspondingly, its

throughput is only a fraction of that of the source-fixed ver-

sion. At around 125ms, the performance counters detect the

presence of contention and activate the rest of the pipeline.

At around 500ms, the remapping rules are synthesized and

threads are migrated to the code cache by 600ms through

a series of page faults. Execution remains within the code

cache, as indicated by the absence of any further faults. Con-

sequently, throughput rises and the benchmark progresses

rapidly, while the coherence invalidations correspondingly

drop to almost zero indicating the lack of contention.

A single thread aggregating results from remapped data is

responsible for the page faults near the end of the execution.

As these are non-high-frequency accesses, Plastic remaps

them on a per-instruction basis, resulting in the high number

of faults. Plastic continues to sample performance counters

throughout execution for any further instances of contention;

in this case, however, no other contention is detected.

Comparing the throughput of the Plastic-fixed and source-

fixed versions helps precisely define the overhead of the ex-

tra instrumentation required for remapping. Once execution

is transferred to the code cache, the throughput of the Plastic-

fixed version is 110M/s compared to a throughput of 160M/s

for the source-fixed version – a performance loss of 31%.

The remaining difference in overall throughput is due to the

false sharing before the remappings are applied.

Memory Overhead: Plastic trades memory for higher per-

formance by requiring additional memory for the instru-

mented code and to pad and isolate contended cache lines.

In practice we find that a reservation of 64 pages (256 KB)

is sufficient for most remapping scenarios and does not sig-

nificantly reduce the VA space available to applications.

Impact of Remappings on Other Callers: A simple mi-

crobenchmark helps verify the assertion in Section 5.1 that

callers of code blocks not referencing remapped data are

unaffected: a function executes referencing non-contended

0.00

0.20

0.40

0.60

0.80

1.00

bitm
ask

fs_independent

fs_m
ixed

true_share

histogram

km
eans

linear_regression

m
atrix_m

ultiply

pca
string_m

atch

w
ord_count

blackscholes

bodytrack

canneal

dedup

facesim

ferret

fluidanim
ate

raytrace

stream
cluster

sw
aptions

vips
x264

CCBench Phoenix Parsec

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

R

e
la

ti
v
e

 t
o

 L
in

e
a

r
S

p
e

e
d

u
p w/o Plastic

w/ Plastic

5.4x

1.4x

3.6x

Figure 10. Performance of Phoenix, Parsec and CCBench suites running with Plastic.

memory followed by an execution referencing contended

memory that triggers remapping. Finally, the original exe-

cution is repeated. Non-coherence misses are ignored since

data resides on a single cache line. The last execution has

under 1% overhead compared to the first, demonstrating the

negligible impact on callers not accessing remapped data.

6.2 Performance Analysis

Plastic is evaluated by comparing the performance of several

workloads running under Xen, normalized against their sin-

gle threaded performance, with and without Plastic. While

this data, shown in Figure 10, ignores the virtualization over-

head, we find it to average 3% over the benchmarks.

Plastic samples contended pages for multiple 2ms epochs,

followed by 250ms of emulation. Stage lengths can be varied

if desired and, like in any sampling, represent a trade-off

between the speed and accuracy of detection. Nevertheless,

we believe they are sufficient for most high-frequency false

sharing and are, in practice, able to accurately detect the

exact regions of false sharing in all the workloads evaluated.

The CCBench: Performance artifacts due to memory con-

tention in real workloads, like those in Section 2, often only

manifest themselves at a not-yet-common degree of scale.

To replicate these effects with fewer cores, we have devel-

oped CCBench, a suite of microbenchmarks that model their

memory access patterns on real workloads, but exacerbate

their effects by contending at higher frequencies.

Table 1 briefly describes the different microbenchmarks and

the real workloads they emulate, while their performance

is seen in Figure 10. Including both true and false sharing

workloads allows us to measure both the performance im-

provement when Plastic is able to “fix” the problem as well

as the impact on performance when it is unable to do so.

fs independent is a classical example of false sharing

with multiple readers and writers accessing independent val-

ues in a global array. It is modeled after spinlocks in a lock

pool [27] or the bytes used to represent the dirtied status of

pages during Java garbage collection [11]. Isolating the sets

of values accessed by a thread onto independent cache lines

reduces execution time from 18.4s to 5.1s, a speedup of 3.6x.

fs mixed involves false sharing between a shared read-

only data range and a shared read-write range, with acces-

sors equally distributed between both data ranges. Read-

mostly spinlocks in the net device structure in Linux

contendwith the transmission and receive queues in a similar

manner [7]. Remapping splits these data ranges and reduces

execution time from 18.7s to 11s, a modest performance im-

provement of 40%. Comparing the performance of accessors

now shows a bimodal distribution: accessors to the read-only

range are contention-free and display a speedup of 6.6x, but

overall program performance is limited by accessors to the

read-write range still suffering from some contention.

bitmaskmodels bitmasks like the flags in the page struc-

ture in the Linux kernel. A combination of read-only and

read-write flags leads to false sharingwithin a single byte, al-

leviated only by splitting the flags into discrete versions [7].

From a byte-level perspective, however, bitmasks represent

true sharing and do not benefit from remapping.

true share simulates lock contention with concurrent

reads and writes to the same memory location.

bitmask and true share represent pathological scenar-

ios for Plastic: high degrees of true sharing that are impossi-

ble to distinguish from false sharing without emulation. De-

Name Description Examples Fixable?

fs independent
Multiple accessors to independent variables

(At least one writer)

Linear Regression in Phoenix [35]

spinlock pool in Boost [27]

Bookeeping in the Java GC [11]

Yes

fs mixed
Shared read-only data co-located with

contended data
net device struct in Linux [7] Yes

bitmask Bitmasks and flags page struct in Linux [7] No

true share Shared read-write data Locks and global counters No

Table 1. Microbenchmarks in CCBench. The Fixable column denotes whether it can be fixed by simply remapping memory.

spite this, due to the sampled nature of emulation, both show

little overhead and perform within 1% of normal execution.

Shared Memory Benchmarks: Plastic’s effectiveness

with real-world benchmarks is evaluated against several ap-

plications from the Phoenix [35] and PARSEC [5] bench-

mark suites. Both of these suites are specifically designed

for shared memory workloads and are representative of ap-

plications from several different domains.

Plastic fixes significant amounts of false sharing in linear

regression, showing a speedup of 5.4x compared to nor-

mal execution. For the remainingworkloads, Plastic imposes

an average of 3% overhead, demonstrating that it does not

adversely impact workloads without false sharing.

As a live detector, Plastic prioritizes performance over com-

pleteness and focuses on detecting high-impact false shar-

ing. While this does lead to some instances of false shar-

ing remaining undetected, we quantify the degree of false

sharing in these instances by comparing against other detec-

tors. Sheriff [24] detects false sharing in streamcluster,

swaptions, histogram, string match, and word

count in addition to linear regression.

Out of these, streamcluster, swaptions, and word

count show less than 5% degradation due to false sharing

and do not have enough contention to trigger the detection

pipeline. False sharing in string match is caused due

to the heap allocator. Not only is this not observed on our

system, but in practice it scales well up to 8 cores.

In contrast, while histogram definitely suffers from

false sharing, the performance impact is found to be only

around 25% when compared against a source-fixed ver-

sion. This does not warrant remapping because, unlike the

case in linear regression, fs independent, and

fs mixed, the benefit of mitigating false sharing no longer

masks the remapping overhead discussed in Section 6.1.

The benchmark results highlight the differences in approach

taken to false sharing detection and mitigation by Sher-

iff [24] and Plastic. Sheriff forces threads within a process

to operate on private pages, set up using copy-on-write se-

mantics, and merges them at synchronization points. False

sharing is avoided simply by batching updates to contended

memory regions. linear regression has little syn-

chronization and exhibits a 9x speedup. In contrast, Plastic

has a low throughput detection phase prior to applying the

remappings and shows a speedup of 5.4x. By avoiding ex-

pensive page copy operations, Plastic does an excellent job

of uniformly imposing low overhead on workloads that do

not exhibit false sharing. In contrast, Sheriff shows signif-

icant overheads in programs with frequent locking such as

fluidanimate and canneal.

We find that Plastic can quickly and accurately detect and

correct false sharing with low overhead. In cases where

false sharing exists, but imposes only a small overhead, it is

able to correctly value its potential to improve performance

and do no harm. At the same time, Plastic can significantly

improve the execution of workloads where false sharing

would otherwise impose a crippling scalability limitation.

7. Related Work

Several existing systems study the cache subsystem and de-

tect false sharing in existing application workloads. Plastic

also shares similarities in detection mechanisms with race

detectors and other systems designed to diagnose memory

contention issues apart from false sharing.

False Sharing: Sheriff [24] shares a similar goal to Plas-

tic in transparently detecting and fixing false sharing in pro-

duction environments. It splits threads into separate, inde-

pendent processes, each of which has private page tables.

Changes to memory are localized to a private copy of mod-

ified pages which are merged together at synchronization

points. False sharing is detected by identifying interleaved

writes at a cache line granularity, while mitigation simply

reduces the frequency of accesses to contended cache lines.

Sheriff makes assumptions about the use of the pthread

API for synchronization and may break correctness if these

assumptions are violated; for instance, in the case of lock-

free data structures. Similarly, locks and other synchroniza-

tion primitives located on the same page as contended struc-

tures may prevent the successful mitigation of false sharing.

Zhao, et al. [40] use memory shadowing to track owner-

ship of cache lines and analyze thread-access patterns with-

out full cache simulation. Using DynamoRIO [8] for instru-

mentation, they help detect cache contention with around 5x

overhead, and makes no attempt to mitigate the problem.

DProf [34] is a data profiler that associates access costs with

data rather than instructions. It helps developers identify

memory regions frequently experiencing high access costs,

including due to true and false sharing, but does not automat-

ically distinguish between the causes or help mitigate them.

Intel Performance Tuning Utility [21] uses performance

counter monitoring to identify contention, but does not dis-

tinguish between true and false sharing. Unlike Plastic, it

neither attempts to analyze the performance effects of this

contention, nor does it attempt to fix them in any way.

Several approaches for detecting cache contention model the

cache in software [16, 22, 37], and are clearly intended for

development use only. Pluto [16], a Valgrind based instru-

mentation engine, imposes around two orders of magnitude

overhead, while Cmp$im [22], which uses Pin [25] to sim-

ulate the entire memory hierarchy and coherence algorithms

in software, runs at 4-10 MIPS.

Race Detection: Like detecting false sharing, race detec-

tion requires instrumenting every memory access to log the

ordering of accesses to shared memory. Aikido [32] uses

hypervisor-based, per-thread shadow page tables to identify

contended pages for further analysis, in a manner similar to

Plastic. Greathouse, et al. [14] use coherence invalidations as

a trigger for more heavy-weight, software-based analysis to

identify actual data races. As a race detector, however, they

treat any such invalidation as suspicious and perform further

analysis, without analyzing its performance impact.

8. Discussion and Future Work

In order to maximize performance, Plastic leverages hard-

ware facilities whenever possible, only resorting to software

interposition when the required features are not exposed by

the hardware. Processors, however, are constantly evolving

and some additional features may further reduce overhead.

Performance counters operating in sampling mode, called

Precise Event Based Sampling (PEBS) or Instruction Based

Sampling (IBS) on Intel and AMD processors respectively,

store processor state on sampled occurrences of selected

microarchitectural events. Sampling coherence invalidations

stores processor state when contended memory accesses oc-

cur. Unfortunately, on Nehalem processors this does not in-

clude the memory address accessed. Recording this address,

as proposed for future architectures, would allow Plastic to

identify contended memory regions directly in hardware.

Plastic relies on page-granularity protection to detect access

to contendedmemory, unfortunately resulting in faults for all

accesses to that page. Hardware watchpoints overcome this

by detecting accesses at byte-granularity, but are extremely

limited in number. An unlimited number of watchpoints [15]

would help significantly reduce the number of faults.

Language runtimes that manage memory for their applica-

tions independently of the OS could suffer unnecessary per-

formance degradation due to remapping. Plastic invalidates

applied remappings to maintain program safety, but does not

currently extend this facility to monitor the performance im-

pact of the remapping and, if necessary, restore execution to

the original code. Plastic also cannot be disabled on a per-

application basis, but could be extended to provide this fa-

cility with support from the guest OS.

Lastly, dynamically fixing false sharing should be a last re-

sort only for when statically fixing the problem in source

is not possible. Plastic’s detection engine could be extended

with debug symbols to provide developers source-level re-

ports of the contending data structures.

9. Conclusion

Plastic demonstrates that, by taking responsibility for mon-

itoring and managing coherence misses in its caches, a sys-

tem can dynamically recover from workloads that exhibit

pathological false sharing. In order to achieve this, the sys-

tem tackled two challenging problems. First, the aggregation

and integration of a variety ofmonitoring and diagnosis tech-

niques, including hardware performance counters, shadow

paging, and instruction emulation to quickly and precisely

identify false sharing with low overhead. Second, the sys-

tem demonstrated a sub-page granularity remapping facility

that is sufficiently high-performance as to show a speedup of

3-6x in cases of high-rate false sharing.

10. Acknowledgments

We would like to thank the anonymous reviewers and our

shepherd, Gilles Muller, for their valuable feedback. Ge-

offrey Lefebvre provided much valuable advice regarding

the design, while Mike Kozuch and Babu Pillai at Intel

Labs, Pittsburgh patiently permitted us to experiment with

their multi-core machine. Finally, our thanks to Tim Dee-

gan, Steve Hand, Malte Schwarzkopf, Tim Harris, and sev-

eral members of the systems lab at UBC for comments and

suggestions at various stages of this work.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and

the art of virtualization. In SOSP, 2003.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,

S. Peter, T. Roscoe, A. Schupbach, and A. Singhania. The

multikernel: a new OS architecture for scalable multicore sys-

tems. In SOSP, 2009.

[3] T. Bergan, N. Hunt, L. Ceze, and S. Gribble. Deterministic

process groups in dos. In OSDI, 2010.

[4] A. R. Bernat and B. P. Miller. Anywhere, any-time binary

instrumentation. In PASTE, 2011.

[5] C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for

chip-multiprocessors. InWorkshop on Modeling, Benchmark-

ing and Simulation, 2009.

[6] W. J. Bolosky and M. L. Scott. False sharing and its effect on

shared memory performance. In SEDMS, 1993.

[7] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.

Kaashoek, R. Morris, and N. Zeldovich. An analysis of linux

scalability to many cores. In OSDI, 2010.

[8] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastruc-

ture for adaptive dynamic optimization. In CGO, 2003.

[9] M. Burrows, U. Erlingsson, S.-T. A. Leung, M. T. Vandevo-

orde, C. A.Waldspurger, K.Walker, andW. E.Weihl. Efficient

and flexible value sampling. In ASPLOS, 2000.

[10] B. Dawes, D. Abrahams, and R. Rivera. Boost C++ libraries.

http://www.boost.org, 2009.

[11] D. Dice. False sharing induced by card table marking, Febru-

ary 2011. URL https://blogs.oracle.com/dave/

entry/false_sharing_induced_by_card.

[12] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.

Necula. XFI: software guards for system address spaces. In

OSDI, 2006.

[13] B. Ford and R. Cox. Vx32: lightweight user-level sandboxing

on the x86. In USENIX ATC, 2008.

[14] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T. Austin.

Demand-driven software race detection using hardware per-

formance counters. In ISCA, 2011.

[15] J. L. Greathouse, H. Xin, Y. Luo, and T. Austin. A case for

unlimited watchpoints. In ASPLOS, 2012.

[16] S. M. Gunther and J. Weidendorfer. Assessing cache false

sharing effects by dynamic binary instrumentation. In WBIA,

2009.

[17] J. L. Hennessy and D. A. Patterson. Computer Architecture:

A Quantitative Approach. 5 edition, 2011.

[18] M. Herlihy and J. Moss. System for achieving atomic non-

sequential multi-word operations in shared memory, June 27

1995. US Patent 5,428,761.

[19] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,

D. Jenkins, H. Wilson, N. Borkar, G. Schrom, and et al. A 48-

Core IA-32 message-passing processor with DVFS in 45nm

CMOS. IEEE, 2010.

[20] Intel. Avoiding and identifying false sharing among

threads, November 2011. URL http://software.

intel.com/en-us/articles/avoiding-and-

identifying-false-sharing-among-threads/.

[21] Intel. Intel performance tuning utility, October

2012. URL http://software.intel.com/en-

us/articles/intel-performance-tuning-

utility/.

[22] A. Jaleel, R. S. Cohn, C. keung Luk, and B. Jacob. CMPSim:

A pin-based on-the-fly multi-core cache simulator. In MOBS,

2008.

[23] D. Levinthal. Performance analysis guide for Intel Core i7

processor and Intel Xeon 5500 processors, 2008.

[24] T. Liu and E. D. Berger. Sheriff: precise detection and auto-

matic mitigation of false sharing. In OOPSLA, 2011.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumen-

tation. In PLDI, 2005.

[26] M. Martin, M. Hill, and D. Sorin. Why on-chip cache coher-

ence is here to stay. CACM, 55(7):78–89, 2012.

[27] mcmcc. false sharing in boost::detail::spinlock pool?,

June 2012. URL http://stackoverflow.com/

questions/11037655/false-sharing-in-

boostdetailspinlock-pool.

[28] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller.

Memory performance and cache coherency effects on an Intel

Nehalem multiprocessor system. In PACT, 2009.

[29] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood.

Logtm: Log-based transactional memory. In HPCA, 2006.

[30] R. J. Moore. A universal dynamic trace for linux and other

operating systems. In USENIX ATC, 2001.

[31] M. Olszewski, K. Mierle, A. Czajkowski, and A. D. Brown.

JIT instrumentation: a novel approach to dynamically instru-

ment operating systems. In EuroSys, 2007.

[32] M. Olszewski, Q. Zhao, D. Koh, J. Ansel, and S. P. Amaras-

inghe. Aikido: Accelerating shared data dynamic analyses. In

ASPLOS, 2012.

[33] M. S. Papamarcos and J. H. Patel. A low-overhead coherence

solution for multiprocessors with private cache memories. In

ISCA, 1984.

[34] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache

performance bottlenecks using data profiling. In EuroSys,

2010.

[35] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and

C. Kozyrakis. Evaluating MapReduce for multi-core and

multiprocessor systems. In HPCA, 2007.

[36] A. Tamches and B. P. Miller. Fine-grained dynamic instru-

mentation of commodity operating system kernels. In OSDI,

1999.

[37] J. Tao and W. Karl. CacheIn: A toolset for comprehensive

cache inspection. In International Conference on Computa-

tional Science, 2005.

[38] C. Thacker. Beehive: A many-core computer for FPGAs (v5).

MSR Silicon Valley, Jan 2010. URL http://projects.

csail.mit.edu/beehive/BeehiveV5.pdf.

[39] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy,

S. Okasaka, N. Narula, and N. Fullagar. Native client: A

sandbox for portable, untrusted x86 native code. In IEEE

S&P, 2009.

[40] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and

S. Amarasinghe. Dynamic cache contention detection in

multi-threaded applications. In VEE, 2011.

