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Abstract

The performance characteristics of modern non-volatile

storage devices have led to storage becoming a shared,

rack-scale resource. System designers have an impera-

tive to rethink existing storage abstractions in light of this

development. This paper proposes a lightweight stor-

age abstraction that encapsulates full-system hardware

resources and focuses only on isolating and sharing stor-

age devices across multiple, remote tenants. In support

of this, it prototypes a shared-nothing runtime capable

of managing hardware and scheduling this abstraction in

a manner that avoids performance interference and pre-

serves the performance of the storage devices for tenants.

1 Introduction

Rack-scale storage architectures such as Facebook’s

Lightning [53] and EMC’s DSSD [17] are dense enclo-

sures containing storage class memories (SCMs)1 that

occupy only a few units of rack space and are capa-

ble of serving millions of requests per second across

petabytes of persistent data. These architectures in-

troduce a tension between efficiency and performance:

the bursty access patterns of applications necessitate

that storage devices be shared across multiple tenants

in order to achieve efficient utilization [39], but the

microsecond-granularity access latencies of SCMs ren-

ders them highly sensitive to software overheads along

the datapath [12, 64].

This tension has forced a reconsideration of storage ab-

stractions and raised questions about where functionality,

such as virtualization, isolation, and redundancy, should

be provided. How should these abstractions evolve to

support datacenter tenants without compromising effi-

ciency, performance, or overall system complexity?

Decibel is a thin virtualization platform, analogous to

a processor hypervisor, designed for rack-scale storage,

that demonstrates the ability to provide tenants with flex-

ible, low-latency access to SCMs. Its design is motivated

by the following three observations:

1. Device-side request processing simplifies storage im-

plementations. By centralizing the control logic nec-

essary for multi-tenancy at processors adjacent to stor-

1We use the term storage class memory through the rest of the
paper to characterize high performance PCIe-based NVMe SSDs and
NVDIMM-based persistent storage devices.

age devices, traditional storage systems impose latency

overheads of several hundreds of microseconds to few

milliseconds under load [39]. In an attempt to preserve

device performance, there has been a strong trend to-

wards bypassing the CPU altogether and using hardware-

level device passthrough and proprietary interconnects to

present SCMs as serverless storage [12, 27, 3].

Serverless storage systems throw the proverbial baby out

with the bathwater – eliminating the device-side CPU

from the datapath also eliminates an important media-

tion point for client accesses and shifts the burden of pro-

viding datapath functionality to client-based implemen-

tations [4, 11] or to the devices themselves [71, 27, 1].

For isolation, in particular, client implementations re-

sult in complicated distributed logic for co-ordinating ac-

cesses [27] and thorny questions about trust.

2. Recent datacenter infrastructure applications have

encompassed functionality present in existing feature-

rich storage abstractions. In addition to virtualizing

storage, storage volumes provide a rich set of function-

ality such as data striping, replication, and failure re-

silience [51, 18, 9, 28]. Today, scalable, cloud-focused

data stores that provide persistent interfaces, such as key-

value stores, databases, and pub/sub systems, increas-

ingly provide this functionality as part of the application;

consequently, the provision of these features within the

storage system represents a duplication of function and

risks introducing both waste and unnecessary overheads.

3. Virtualizing only the capacity of devices is insufficient

for multi-tenancy. Extracting performance from SCMs

is extremely compute-intensive [72, 12, 50] and sensi-

tive to cross-core contention [6]. As a result, storage

systems require a system-wide approach to virtualiza-

tion and must ensure both adequate availability of com-

pute, network, and storage resources for tenant requests,

and the ability to service these requests in a contention-

free manner. Further, unlike traditional storage volumes

that do not adequately insulate tenants from performance

interference [39], the system must provide tenants with

predictable performance in the face of multi-tenancy.

These observations guide us to a minimal storage ab-

straction that targets isolation and efficient resource shar-

ing for disaggregated storage hardware. Decibel intro-

duces Decibel volumes (referred to as dVols for short):

vertical slices of the storage host that bind SCMs with

the compute and network resources necessary to service



tenant requests. As both the presentation of fine-grained

storage abstractions, such as files, objects, and key-value

pairs, and datapath functionality, such as redundancy and

fault-tolerance, have moved up the stack, dVols provide a

minimal consumable abstraction for shared storage with-

out sacrificing operational facilities such as transparent

data migration.

To ensure microsecond-level access latencies, Decibel

prototypes a runtime that actively manages hardware re-

sources and controls request scheduling. The runtime

partitions hardware resources across cores and treats

dVols as schedulable entities, similar to threads, to be

executed where adequate resources are available to ser-

vice requests. Even on a single core, kernel scheduling

policies may cause interference, so Decibel completely

bypasses the kernel for both network and storage re-

quests, and co-operatively schedules request processing

logic and device I/O on a single thread.

Decibel is evaluated using a commodity Xeon server

with four directly-connected enterprise PCIe NVMe

drives in a single 1U chassis. Decibel presents storage

to remote tenants over Ethernet-based networking us-

ing a pair of 40GbE NICs and achieves device-saturated

throughputs with a latency of 220-450µs, an overhead of

approximately 20-30µs relative to local access times.

2 Decibel and dVols

Scalable data stores designed specifically for the cloud

are important infrastructure applications within the dat-

acenter. Table 1 lists some popular data stores, each of

which treats VM or container-based nodes as atomic fail-

ure domains and handles lower-level network, storage,

and application failures uniformly at the node level. As a

result, several of these data stores recommend deploying

on “ephemeral”, locally-attached disks in lieu of reliable,

replicated storage volumes [47, 40, 14].

These systems are designed to use simple local disks be-

cause duplicating functionality such as data redundancy

at the application and storage layers is wasteful in terms

of both cost and performance; for example, running a

data store with three-way replication on top of three-way

replicated storage results in a 9x write amplification for

every client write. Further, running a replication protocol

at multiple layers bounds the latency of write requests

to the latency of the slowest device in the replica set.

The desire to minimize this latency has led to the devel-

opment of persistent key-value stores, such as LevelDB

and RocksDB, that provide a simple, block-like storage

abstraction and focus entirely on providing high perfor-

mance access to SCMs.

The dVol is an abstraction designed specifically for rack-

Application Backend FT Ephem Year

Key-Value Stores

Riak LevelDB Y Y 2009

Voldemort BerkeleyDB Y N 2009

Hyperdex File Y Y 2011

Databases

Cassandra File Y Y 2008

MongoDB RocksDB Y N 2009

CockroachDB RocksDB Y Y 2014

Pub/Sub Systems

Kafka File Y Y 2011

Pulsar BookKeeper Y Y 2016

Table 1: Examples of cloud data stores. FT denotes that

replication and fault-tolerance are handled within the data store

and storage failures are treated as node failures. Ephem indi-

cates that users are encouraged to install data stores over local,

“ephemeral” disks – Voldemort and Mongo suggest using host-

level RAID as a convenience for recovering from drive failures.

Backend is the underlying storage interface; all of these sys-

tems assume a local filesystem such as ext4, but several use a

library-based storage abstraction over the file system API.

scale storage in response to these observations. As a

multi-tenant system, Decibel faces challenges similar to

a virtual machine monitor in isolating and sharing an

extremely fast device across multiple tenants and bene-

fits from a similar lightweight, performance-focused ap-

proach to multiplexing hardware. Correspondingly, a

dVol is a schedulable software abstraction that encapsu-

lates the multiple hardware resources required to serve

stored data. In taking an end-to-end view of resource

sharing and isolation rather than focusing only on virtu-

alizing storage capacity, dVols resemble virtual machines

to a greater degree than traditional storage volumes.

In borrowing from VMs as a successful abstraction for

datacenter computation, dVols provide the following

properties for storage resources:

Extensible Hardware-like Interfaces: dVols present

tenants with an interface closely resembling a physi-

cal device and so avoid restricting application seman-

tics. dVols also offer tenants the ability to offload func-

tionality not directly supported by SCMs. For example,

dVols support atomic updates [26, 13] and compare-and-

swap [67] operations.

Support for Operational Tasks: Decoupling storage

from the underlying hardware provides a valuable point

of indirection in support of datacenter resource manage-

ment. In virtualizing physical storage, dVols support op-

erational tasks such as non-disruptive migration and pro-

vide a primitive for dynamic resource schedulers to opti-

mize the placement of dVols.

Visibility of Failure Domains: Unlike traditional vol-
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Figure 1: dVol and per-core runtime architecture in Decibel

umes that abstract information about the underlying

hardware away, dVols retain and present enough device

information to allow applications to reason about failure

domains and to appropriately manage placement across

hosts and devices.

Elastic Capacity: SCMs are arbitrarily partitioned into

independent, non-contiguous dVols at runtime and, sub-

ject to device capacity constraints, can grow and shrink

during execution without causing device fragmentation

and a corresponding wastage of space.

Strong Isolation and Access Control: As multi-tenant

storage runs the risk of performance interference due to

co-location, dVols allow tenants to specify service-level

objectives (SLOs) and provide cross-tenant isolation and

the throughput guarantees necessary for data stores. In

addition, dVols include access control mechanisms to al-

low tenants to specify restrictions and safeguard against

unauthorized accesses and information disclosure.

As the basis for a scalable cloud storage service, Deci-

bel represents a point in the design space that is between

host-local ephemeral disks on one hand, and large-scale

block storage services such as Amazon’s Elastic Block

Store (EBS) on the other. Like EBS volumes, dVols are

separate from the virtual machines that access them, may

be remapped in the face of failure, and allow a greater de-

gree of utilization of storage resources than direct access

to local disks. However, unlike volumes in a distributed

block store, each dVol in Decibel is stored entirely on a

single physical device, provides no storage-level redun-

dancy, and exposes failures directly to the client.

3 The Decibel Runtime

Decibel virtualizes the hardware into dVols and multi-

plexes these dVols onto available physical resources to

ensure isolation and to meet their performance objec-

tives. Each Decibel instance is a single-host runtime that

is responsible solely for abstracting the remote, shared

nature of disaggregated storage from tenants. Decibel

can provide ephemeral storage directly to tenants or act

as a building block for a larger distributed storage system

where multiple Decibel instances are combined to form

a network filesystem or an object store [65, 15].

Decibel’s architecture is shown in Figure 1: it partitions

system hardware into independent, shared-nothing per-

core runtimes. As achieving efficient resource utilization

requires concurrent, wait-free processing of requests and

needs to eliminate synchronization and coherence traf-

fic that is detrimental to performance, Decibel opts for

full, top-to-bottom system partitioning. Each per-core

runtime has exclusive access to a single hardware queue

for every NIC and SCM in the system and can access the

hardware without requiring co-ordination across cores.

Decibel relies on kernel-bypass libraries to partition the

system and processes I/O traffic within the application

itself; a network stack on top of the DPDK [30] and a

block layer on top of the SPDK [32] provide direct access

to network and storage resources. Each per-core run-

time operates independently and is uniquely addressable

across the network. Execution on each core is through

a single kernel thread on which the runtime co-operative

schedules network and storage I/O and request process-

ing along with virtualization and other datapath services.



vol read (vol, addr, len) →data

vol read ex (vol, addr, len) →(data, meta)

vol write (vol, addr, len, data) →status

vol write ex (vol, addr, len, data, meta) →status

vol deallocate (vol, addr[], nchunks) →status

vol write tx (vol, addr, len, data) →status

vol cmpxchg (vol, addr, old, new) →status

Figure 2: Datapath Interfaces for dVols. The last two provide

functionality not directly provided by SCMs in hardware.

Each per-core runtime services requests from multiple

tenants for multiple dVols, while each dVol is bound to a

single core. The mapping from dVols to the host and core

is reflected in the network address directory, which is a

separate, global control path network service. As self-

contained entities, dVols can be migrated across cores

and devices within a host or across hosts in response to

changes in load or performance objectives.

By forcing all operations for a dVol to be executed se-

rially on a single core, Decibel avoids the contention

overheads that have plagued high-performance concur-

rent systems [8, 10]. Binding dVols to a single core and

SCM restricts the performance of the dVol to that of a

single core and device, forcing Decibel to rely on client-

side aggregation where higher throughput or greater ca-

pacity are required. We anticipate that the runtime can

be extended to split existing hot dVols across multiple

cores [2] to provide better performance elasticity.

Clients provision and access dVols using a client-side li-

brary that maps client interfaces to remote RPCs. The

library also handles interaction with the network address

directory, allowing applications to remain oblivious to

the remote nature of dVols. Legacy applications could be

supported through a network block device driver; how-

ever, this functionality is currently not provided.

3.1 Virtual Block Devices

Storage virtualization balances the need to preserve the

illusion of exclusive, locally-attached disks for tenants

with the necessity of supporting operational and man-

agement tasks for datacenter operators. The tenant in-

terfaces to virtualized storage, enumerated in Figure 2,

closely match that of the underlying hardware with com-

mands such as read, write, and deallocate2 providing the

same semantics as the corresponding NVMe commands.

Device Partitioning: dVols provide tenants a sparse

virtual address space backed by an SCM. As the stor-

age requirements of tenants vary over time, the capacity

2We use the NVMe “deallocate” command, also termed “trim”,
“unmap”, or “discard” in the context of SATA/SAS SSDs.

utilization of dVols constantly grows and shrinks during

execution. Consequently, Decibel must manage the fine-

grained allocation of capacity resources across dVols.

One alternative for device partitioning is to rely on

hardware-based NVMe namespaces [71] which divide

SCMs into virtual partitions that may be presented di-

rectly to tenants. As implemented in modern hardware,

namespaces represent large contiguous physical regions

of the device, making them unsuitable for dynamically

resizing workloads. Moreover, many NVMe devices do

not support namespaces at all, and where they are sup-

ported, devices are typically limited to a very small num-

ber3 of namespace instances. While the namespace idea

is in principle an excellent abstraction at the device layer,

these limits make them insufficient today, and are one of

the reasons that Decibel elects to virtualize the SCM ad-

dress space above the device itself.

Decibel virtualizes SCMs at block-granularity. Blocks

are 4K contiguous regions of the device’s physical ad-

dress space. While some SCMs support variable block

sizes, Decibel uses 4K blocks to match both existing stor-

age system designs and x86 memory pages. Blocks are

the smallest writeable unit that do not require firmware

read-modify-write (RMW) cycles during updates, and

also generally the largest unit that can be atomically over-

written by SCMs for crash-safe in-place updates.

Address Virtualization: dVols map the virtual address

space presented to tenants onto physical blocks using a

private virtual-to-physical (V2P) table. Each dVol’s V2P

table is structured as a persistent B+ tree, with fixed,

block-sized internal and leaf nodes, and is keyed by 64-

bit virtual addresses; internal nodes store references to

their children as 64-bit physical block addresses.

V2P mappings are stored as metadata on the SCM. Client

writes are fully persisted, including both data and V2P

mappings, before being acknowledged. Decibel per-

forms soft-update-ordered [19] writes of data blocks and

metadata: where a write requires an update to the V2P ta-

ble, data is always written and acknowledged by the de-

vice before the associated metadata write is issued. The

current implementation is conservative, in that all V2P

transactions are isolated. There is opportunity to further

improve performance by merging V2P updates. Subse-

quent writes to allocated blocks do not modify the V2P

table and occur in-place, relying on the block-level write

atomicity of SCMs for consistency.

Modern SCMs show little benefit for physically contigu-

ous accesses, especially in multi-tenant scenarios with

3The maximum number supported today is 16, with vendors indi-
cated that devices supporting 128 namespaces are likely to be available
over the next few years.



����ELWV� 

3K\VLFDO�%ORFN�$GGUHVV�����ELWV�  / , : ' 

:��:ULWH-RXW 
,���,QFRPLQJ 

'���'LUW\ 
/���/RFNHG 

Figure 3: Cached V2P Entry

mixed reads and writes. As a result, dVols do not

preserve contiguity from tenant writes and split large,

variable-sized requests into multiple, block-sized ones.

V2P mappings are also stored at a fixed, block-sized

granularity. This trades request amplification and an in-

crease in V2P entries for simplified system design: Deci-

bel does not require background compaction and defrag-

mentation services, while V2P entries avoid additional

metadata for variable-sized mappings.

Decibel aggressively caches the mappings for every dVol

in DRAM. The V2P table for a fully-allocated terabyte-

sized device occupies approximately 6GB (an overhead

of 0.6%). While non-trivial, this is well within the limits

of a high performance server. Cached V2P entries vary

from the on-device format: as Figure 3 illustrates, physi-

cal addresses are block-aligned and require only 52 bits,

so the remaining 12 bits are used for entry metadata.

The Incoming and Write-out bits are used for cache man-

agement and signify that the entry is either waiting to be

loaded from the SCM or that an updated entry is being

flushed to the SCM and is awaiting an acknowledgement

for the write. The Dirty bit indicates that the underlying

data block has been modified and is used to track dirtied

blocks to copy during dVol migrations. The Locked bit

provides mutual exclusion between requests to overlap-

ping regions of the dVol: when set, it restricts all access

to the mapping for any request context besides the one

that has taken ownership of the lock.

Block Allocation: Requests to allocate blocks require a

consistent view of allocations across the entire system to

prevent races and double allocations. Decibel amortizes

the synchronization overhead of allocations by splitting

them into reservations and assignment: each core re-

serves a fixed-size, physically-contiguous collection of

blocks called an extent from the device in a single opera-

tion and adds it to a per-core allocation pool (resembling

the thread cache in tcmalloc).

As seen in Figure 4, SCMs are divided into multiple

extents, which are dynamically reserved by cores. The

reservation of extents to cores is tracked by a global,

per-device allocator. Cores asynchronously request more

extents from the allocator once the number of available

blocks in their local pool falls below a certain threshold.

This ensures that, as long as the device is not full, allo-

cations succeed without requiring any synchronization.
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Figure 4: Physical Partitioning of Storage Devices

Assigning entire extents to dVols risks fragmentation and

a wastage of space. Instead, cores satisfy allocation re-

quests from dVols by assigning them blocks from any

extent in their private pool at a single block granularity.

As individual blocks from extents are assigned to dif-

ferent dVols, the split-allocation scheme eliminates both

fragmentation and contention along the datapath.

Internally, extents track the allocation status of blocks us-

ing a single block-sized bitmap; as every bit in the bitmap

represents a block, each extent is 128 MB (4K×4K×8).
Restricting the size of extents to the representation ca-

pacity of a single block-sized bitmap allows the bitmap

to atomically be overwritten after allocations and frees.

dVols explicitly free blocks that are no longer need using

the deallocate command, while deleting dVols or migrat-

ing them across devices implicitly triggers block deallo-

cations. Freed blocks are returned to the local pool of the

core where they were originally allocated and are used to

fulfil subsequent allocation requests.

Data Integrity and Paravirtual Interfaces: SCMs

are increasingly prone to block errors and data corrup-

tion as they age and approach the endurance limits of

flash cells [57]. Even in the absence of hardware failures,

SCMs risk data corruption due to write-tearing: since

most SCMs do not support atomic multi-block updates,

failures during these updates result in partial writes that

leave blocks in an inconsistent state.

Decibel provides additional services not directly avail-

able in hardware to help prevent and detect data corrup-

tion. On each write, it calculates block-level checksums

and verifies them on reads to detect corrupted blocks be-

fore they propagate through the system. dVols also sup-

port two additional I/O commands: multi-block atomicity

to protect against write-tearing and block compare-and-

swap to allow applications that can only communicate

over shared storage to synchronize operations using per-

sistent, on-disk locks [67].
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Figure 5: Extended Logical Blocks (Block + Metadata)

Several enterprise SCMs support storing per-block meta-

data alongside data blocks and updating the metadata

atomically with writes to the data. The block and meta-

data regions together are called extended logical blocks

(shown in Figure 5). Block metadata corresponds to the

Data Integrity Field (DIF) provided by SCSI devices and

is intended for use by the storage system. Decibel utilizes

this region to store a CRC32-checksum of every block.

Block checksums are self-referential integrity checks

that protect against data corruption, but offer no guar-

antees about metadata integrity, as V2P entries pointing

to stale or incorrect data blocks are not detected. Meta-

data integrity can be ensured either by storing checksums

with the metadata or by storing backpointers alongside

the data. To avoid updating the mappings on every write,

Decibel stores backpointers in the metadata region of a

block. As the data, checksum, and backpointer are up-

dated atomically, Decibel overwrites blocks in-place and

still remains crash consistent.

The metadata region is exposed to tenants through the ex-

tended, metadata-aware read and write commands (see

Figure 2) and can be used to store application-specific

data, such as version numbers and cryptographic capa-

bilities. As this region is shared between Decibel and

tenants, the extended read and write functions mask out

the checksum and backpointer before exposing the re-

mainder of the metadata to tenants.

Since most SCMs are unable to guarantee atomicity

for writes spanning multiple blocks, Decibel provides

atomic updates using block-level copy-on-write seman-

tics. First, new physical blocks are allocated and the data

written, following which the corresponding V2P entries

are modified to point to the new blocks. Once the up-

dated mappings are persisted, the old blocks are freed.

As the V2P entries being updated may span multiple B-

tree nodes, a lightweight journal is used to transactional-

ize the update and ensure crash-consistency.

To perform block-level CAS operations, Decibel first en-

sures that there are no in-flight requests for the desired

block before locking its V2P entry to prevent access un-

til the operation is complete. The entire block is then

read into memory and tested against the compare value;

if they match, the swap value is written to the block. Stor-

age systems have typically used CAS operations, when

available, to co-ordinate accesses to ranges of a shared

vol create () →(vol, token)

vol restrict (vol, type, param) →status

vol open (vol, token) →status

vol change auth (vol, token) →newtoken

vol delete (vol, token) →status

Figure 6: Provisioning and Access Control Interfaces

device or volume without locking the entire device.

Provisioning and Access Control: Access control

mechanisms restrict a tenant’s view of storage to only

the dVols it is permitted to access. Decibel uses a

lightweight, token-based authentication scheme for au-

thorization and does not protect data confidentiality via

encryption, as such CPU-intensive facilities are best left

to either the clients or the hardware.

Figure 6 enumerates the control plane interfaces, pre-

sented to tenants, to provision dVols and manage access

control policies for them. While creating dVols, Decibel

generates a random globally unique identifier and token

pair, which are returned to the tenant for use as a volume

handle and credentials for future access.

In addition to credential-based authorization, dVols can

also restrict access on the basis of network parameters,

such as a specific IP address, or to certain VLANs and

VXLANs4. By forcing all traffic for a dVol onto a private

network segment, Decibel allows policies to be applied

within the network; for example, traffic can be routed

through middleboxes for packet inspection or rely on

traffic shaping to prioritize latency-sensitive workloads.

3.2 Scheduling Storage

Virtualization allows tenants to operate as if deployed

on private, local storage, while still benefiting from the

flexibility and economic benefits of device consolidation

within the datacenter. For practical deployments, pre-

serving only an interface resembling local storage is in-

sufficient: the storage system must also preserve the per-

formance of the device and insulate tenants from inter-

ference due to resource contention and sharing.

The need for performance isolation in multi-tenant stor-

age systems has led to the development of several al-

gorithms and policies to provide fair sharing of devices

and guaranteeing tenant throughput [44, 21, 68, 22, 23,

37, 61, 69, 66, 60, 73] and for providing hard deadlines

for requests [37, 22, 69, 73]. Rather than prescribing a

particular policy, Decibel provides dVols as a policy en-

forcement tool for performance isolation.

4Virtual Extensible LANs (VXLANs) provide support for L2-over-
L4 packet tunneling and are used to build private overlay networks.
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Figure 7: Throughput and Latency of Reads
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Figure 8: Throughput and Latency of Writes

SLOs: Throughput and Latency: Figures 7 and 8

compare the throughput and latency for both reads and

writes of a single device, measured locally at different

queue depths. The results lead us to two observations

about performance isolation for SCMs:

There is a single latency class for the entire device. Even

for multi-queue devices, request latency depends on

overall device load. Despite the fact that the NVMe

specification details multiple scheduling policies across

submission queues for QoS purposes, current devices do

not sufficiently insulate requests from different queues to

support multiple latency classes for a single device. In-

stead Decibel allows the storage administrator to pick a

throughput target for every SCM, called the device ceil-

ing, to match a desired latency target.

Providing hard latency guarantees is not possible on to-

day’s devices. Comparing average and 95th percentile

latencies for the device, even at relatively low utilization

levels, reveal significant jitter, particularly in the case of

writes. Long tail latencies have also been observed for

these devices in real deployments [25]. This is largely

due to the Flash Translation Layer (FTL), a hardware

indirection layer that provides background bookkeeping

operations such as wear levelling and garbage collection.

Emerging hardware that provides predictable perfor-

mance by managing flash bookkeeping in software is

discussed in Section 5. In the absence of predictable

SCMs, Decibel focuses on preserving device throughput.

dVols encapsulate an SLO describing their performance

requirements, either in terms of a proportional share of

the device or a precise throughput target.

Characterizing Request Cost: Guaranteeing through-

put requires the scheduler to be able to account for the

cost of every request before deciding whether to issue it

to the device. Request costs, however, are variable and

a function of the size and nature of the request, as well

as the current load on the SCM. For example, writes are

significantly cheaper than reads as long as they are be-

ing absorbed by the SCM write buffer, but become much

more expensive once the write buffer is exhausted.

The Decibel scheduler does not need to account for

variable-sized tenant requests as the address translation

layer of the dVol converts them into uniform 4K requests

at the block layer. As a simplifying assumption, the

scheduler does not try and quantify the relative costs of

reads and writes, but instead requires both the device

ceiling and SLOs to specify read and write targets sep-

arately. In the future, we intend to extend the scheduler

to provide a unified cost model for reads and writes [60].

Request Windows: At a specified device ceiling, Deci-

bel determines the size of the global request window for

an SCM, or the total number of outstanding requests that

can be issued against the device. Each per-core runtime

has a private request window, where the sizes of all the

individual request windows are equal to that of the global

request window for the device. The size of the private re-

quest window for cores is calculated on the basis of the

SLO requirements of dVols scheduled to execute on that

core. As dVols are created, opened, moved, or destroyed,

Decibel recalculates the private window sizes, which are

periodically fetched by the cores.

dVols submit requests to devices by enqueuing them in

private software queues. While submitting requests to

the device, the per-core runtime selects requests from the

individual dVol queues until either the request window

is full or there are no pending requests awaiting submis-

sion. The runtime chooses requests from multiple dVols

on the basis of several factors, such as the scheduling pol-

icy, the dVol’s performance requirements, and how many

requests the dVols have submitted recently.

Execution Model: Per-core runtimes co-operatively

schedule dVols on a single OS thread: the request pro-

cessor issues asynchronous versions of blocking syscalls

and yields in a timely manner. Decibel polls NICs and

SCMs on the same thread to eliminate context switching

overheads and to allow the schedulers to precisely con-



trol the distribution of compute cycles between servicing

the hardware and the request processing within dVols.

Request processing within the dVol includes resolving

virtualization mappings and performing access control

checks; consequently, requests may block and yield sev-

eral times during execution and cannot be run to comple-

tion as in many memory-backed systems. The scheduler

treats requests and dVols as analagous to threads and pro-

cesses – scheduling operates at the request level on the

basis of policies applying to the entire dVol. At any given

time the scheduler dynamically selects between execut-

ing the network or storage stacks, and processing one of

several executable requests from multiple dVols.

Storage workloads are bursty and susceptible to in-

cast [54]; as a result, Decibel is periodically subject to

bursts of heavy traffic. At these times, the Decibel sched-

uler elastically steals cycles to prioritize handling net-

work traffic. It polls NICs at increased frequencies to

ensure that packets are not dropped due to insufficient

hardware buffering, and processes incoming packets just

enough to generate ACKs and prevent retransmissions.

Prioritizing network I/O at the cost of request processing

may cause memory pressure due to an increase in num-

ber of pending requests. At a certain threshold, Decibel

switches back to processing requests, even at the cost of

dropped packets. As dropped packets are interpreted as

network congestion, they force the sender to back-off,

thus inducing back pressure in the system.

Scheduling Policies: The scheduling policy determines

how the per-core runtime selects requests from multiple

dVols to submit to the device. To demonstrate the policy-

agnostic nature of Decibel’s architecture, we prototype

two different scheduling policies for dVols.

Strict Time Sharing (STS) emulates local storage by stat-

ically partitioning and assigning resources to tenants. It

sacrifices elasticity and the ability to handle bursts for

more predictable request latency. Each dVol is assigned

a fixed request quota per scheduling epoch from which

the scheduler selects requests to submit to the device.

dVols cannot exceed their quota even in the absence of

any competition. Further, dVols do not gain any credits

during periods of low activity, as unused quota slots are

not carried forward.

Deficit Round Robin (DRR) [59] is a work conserving

scheduler that supports bursty tenant access patterns.

DRR guarantees that each dVol is able to issue its fair

share of requests to the device, but does not limit a dVol

to only its fair share in the absence of competing dVols.

Each dVol has an assigned quota per scheduling epoch;

however, dVols that do not use their entire quota carry

it forward for future epochs. As dVols can exceed their

quota in the absence of competition, bursty workloads

can be accommodated.

By default, Decibel is configured with DRR to preserve

the flexibility benefits of disaggregated storage. This re-

mains a configurable parameter to allow storage admin-

istrators to pick the appropriate policies for their tenants.

3.3 Placement and Discovery

Decibel makes the decision to explicitly decouple

scheduling from the placement of dVols on the appro-

priate cores and hosts in the cluster. This division of re-

sponsibilities allows the scheduler to focus exclusively

on, as seen earlier, providing fine-grained performance

isolation and predictable performance over microsecond

timeframes on a per-core basis. Placement decisions are

made with a view of the cluster over longer timeframes

in response to the changing capacity and performance re-

quirements of dVols. Decibel defers placement decisions

to an external placement engine called Mirador [70]. Mi-

rador is a global controller that provides continuous and

dynamic improvements to dVol placements by migrating

them across cores, devices, and hosts and plays a role

analagous to that of an SDN controller for network flows.

Storage workloads are impacted by more than just the

local device; for example, network and PCIe bandwidth

oversubscription can significantly impact tenant perfor-

mance. Dynamic placement with global resource visibil-

ity is a response to not just changing tenant requirements,

but also to connectivity bottlenecks within the datacen-

ter. Dynamic dVol migrations, however, raise questions

about how tenants locate and access their dVols.

dVol Discovery: Decibel implements a global directory

service that maps dVol identifiers to the precise host and

core on which they run. Cores are independent network-

addressable entities with a unique <ip:port> identifier

and can directly be addressed by tenants. The demulti-

plexing of tenant requests to the appropriate dVol hap-

pens at the core on the basis of the dVol identifier.

dVol Migration: The placement engine triggers migra-

tions in response to capacity or performance shortages

and aims to find a placement schedule that ensures that

both dVol SLOs are met and that the free capacity of the

cluster is uniformly distributed across Decibel instances

to allow every dVol an opportunity to grow. Migrations

can be across cores on the same host or across devices

within the same or different hosts.

Core migrations occur entirely within a single Decibel

instance. dVols are migrated to another core within the

same host without requiring any data movement. First,

Decibel flushes all the device queues and waits for in-

flight requests to be completed, but no new dVol requests



are admitted. The dVol metadata is then moved to the

destination core and the address directory updated. The

client is instructed to invalidate its directory cache and

the connection is terminated; the client then connects to

the new runtime instance and resumes operations.

Device migrations resemble virtual machine migration

and involve a background copy of dVol data. As the dVol

continues to service requests, modified data blocks are

tracked using the dirty bit in the V2P table and copied

to the destination. When both copies approach conver-

gence, the client is redirected to the new destination us-

ing the same technique as core migrations and the re-

maining modified blocks moved in a post-copy pass.

Decibel originally intended to perform migrations with-

out any client involvement using OpenFlow-based redi-

rection in the network and hardware flow steering at the

end-hosts. Due to the limited availability of match rules

at both switches and NICs today, Decibel opts to defer

this functionality to the client library.

3.4 The Network Layer

Decibel presents the dVol interface over asynchronous

TCP/IP-based RPC messages. Network flows are pro-

cessed using a user space networking stack that bor-

rows the TCP state machine and structures for process-

ing TCP flows, such as the socket and flow tables, from

mTCP [34] and combines them with custom buffer man-

agement and event notification systems. Decibel offloads

checksums to the hardware, but currently does not sup-

port TCP segmentation offload.

Clients discover core mappings of dVols using the net-

work address directory. As dVols are pinned to cores

which have exclusive ownership over them, tenants must

direct requests to the appropriate core on the system.

Modern NICs provide the ability to precisely match spe-

cific fields in the packet header with user-defined predi-

cates and determine the destination queue for that packet

on the basis of provided rules. As each core has a unique

<ip:port>, Decibel uses such flow steering to distribute

incoming requests across cores directly in hardware.

For performance reasons, Decibel extends the shared-

nothing architecture into the networking layer. It bor-

rows ideas from scalable user space network stacks [56,

34, 45, 5, 52] and partitions the socket and flow tables

into local, per-core structures that can be accessed and

updated without synchronization.

Memory Management: Decibel pre-allocates large

per-core regions of memory for sockets, flow tables, and

socket buffers from regular memory and mbufs for net-

work packets from hugepages. mbufs are stored in lock-

less, per-socket send and receive ring buffers; the latter
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Figure 9: Local and Remote Latency for 4K Requests

is passed to DPDK which uses them to DMA incom-

ing packets. Decibel does not support zero-copy I/O: in-

coming packet payloads are staged in the receive socket

buffer for unpacking by the RPC layer, while writes are

buffered in the send socket buffer before transmission.

Zero-copy shows little benefit on processors with Direct

Data I/O (DDIO), i.e., the ability to DMA directly into

cache [45]. Further, once packets in mbufs are sent to

the DPDK for transmission, they are automatically freed

and unavailable for retransmissions, making zero-copy

hard without complicating the programming interface.

Event Notifications and Timers: As request pro-

cessing and the network stack execute on the same

thread, notifications are processed in-line via callbacks.

Decibel registers callbacks for new connections and

for I/O events: tcp accept(), tcp rcv ready(), and

tcp snd ready(). Send and receive callbacks are

analagous to EPOLLIN and EPOLLOUT and signify the

availability of data or the ability to transmit data. The

callbacks themselves do not carry any data but are only

event notifications for the request processor to act on us-

ing the socket layer interfaces. Timers for flow retrans-

missions and connection timeouts, similarly, cannot rely

on external threads or kernel interrupts to fire and instead

are tracked using a hashed timer wheel and processed in-

line along with other event notifications.

Why not just use RDMA? Several recent high-

performance systems have exploited RDMA (Remote

Direct Memory Access) – a hardware mechanism that

allows direct access to remote memory without soft-

ware mediation – to eliminate network overheads and

construct a low-latency communication channel between

servers within a datacenter, in order to accelerate net-

work services, such as key-value stores [48, 16, 35] and

data parallel frameworks [33, 24].

RDMA’s advantage over traditional networking shrinks

as request sizes grow [48, 35], especially in the pres-

ence of low-latency, kernel-bypass I/O libraries. Fig-

ure 9 compares local and remote access latencies, over



TCP/IP-based messaging, for SCMs when they are rela-

tively idle (for minimum latencies) and at saturation. For

a typical storage workload request size of 4K, conven-

tional messaging adds little overhead to local accesses.

RDMA has traditionally been deployed on Infiniband

and requires lossless networks for performance, making

it hard to incorporate into existing Ethernet deployments.

On Ethernet, RDMA requires an external control plane to

guarantee packet delivery and ordering [24] and for con-

gestion control to ensure link fairness [74].

Decibel’s choice of traditional Ethernet-based messag-

ing is pragmatic, as the advantages of RDMA for storage

workloads do not yet outweigh the significant deploy-

ment overheads. As RDMA-based deployments increase

in popularity, and the control plane protocols for priori-

tizing traffic and handling congested and lossy networks

are refined, this may no longer hold true. Consequently,

Decibel’s architecture is mostly agnostic to the messag-

ing layer and is capable of switching to RDMA if re-

quired by the performance of future SCMs.

4 Evaluation

Decibel is evaluated on a pair of 32-core Haswell sys-

tems, each with 2x40GbE X710 NICs and 4x800 GB

P3700 NVMe PCIe SSDs, with one system acting as the

server and the other hosting multiple clients. Each ma-

chine has 64GB RAM split across two NUMA nodes,

while the 40GbE interfaces are connected via an Arista

7050 series switch. Both systems run a Linux 4.2 kernel,

however, on the server Decibel takes exclusive owner-

ship of both the network and storage adapters. Clients

are measured both using the default kernel I/O stack and

the DPDK-based network stack from Decibel.

At 4K request sizes, each P3700 is capable of up to 460K

random read IOPS, 100K random write IOPS, and 200K

random mixed (at a 70/30 read to write ratio) IOPS [31],

making the saturated throughput of the system up to

1.8M read IOPS and 800K mixed IOPS. Benchmarking

flash-based SSDs is non-trivial as there are a number of

factors that may affect their performance. First, the per-

formance of a new SSD is not indicative of how it would

perform at steady state with fresh drives outperforming

their steady state counterparts by a factor or two or three.

Even once steady state is reached, there is a great deal of

variability in performance. Transitions from sequential

to random and vice versa impact performance for sev-

eral minutes, while the garbage collector can throttle disk

throughput for several seconds. The P3700s, in partic-

ular, perform well past their rated write throughput for

almost a minute following a period of idleness [55]. The

results reported here are the average across a 10 minute
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Figure 10: Performance of Decibel for a 70/30 read-write

workload. Compared to local storage, Decibel has an overhead

of 30µs at device saturation using a DPDK-based client.

run and follow industry standard guidelines for bench-

marking [62]: first the devices were pre-conditioned with

several weeks of heavy usage and then primed by run-

ning the same workload access pattern as the benchmark

for 10 minutes prior to the benchmark run.

Remote Overhead and Scalability: Decibel is eval-

uated for multi-core scalability and to quantify the over-

head of disaggregating SCMs when compared to direct-

attached storage. All the tests are run against all 4 de-

vices in the system, with clients evenly distributed across

the cores. The clients are modelled after fio and access

blocks randomly across the entire address space. Local

clients execute as a single pinned client per-core with a

queue depth of 32, while there are 2 remote clients per-

core, each operating with a queue depth of 16 requests.

In the Local configuration, clients run directly on the

server and access raw physical blocks from the SCMs

without any virtualization. This local configuration

serves as a baseline to compare the overhead of Deci-

bel. In Remote, clients run separately from the server

and request raw physical blocks across the network over

TCP/IP. For Decibel, SCMs are virtualized into per-client

dVols. Each client has a single dVol that is populated un-

til the SCM is filled, after which they access and update

blocks within the dVol. The remote configuration mea-

sures pure network overhead when compared to directly-

attached SCMs, as well as the overhead of virtualization

when compared to Decibel. The Decibel (DPDK) con-

figuration is identical to Decibel, except that the clients

bypass the kernel and use a DPDK-based network stack.
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Figure 11: Performance of Decibel for an all reads workload.

Compared to local storage, Decibel has an overhead of less than

20µs at device saturation using a DPDK-based client.

Figure 10 compares the performance of all four config-

urations over 16 cores using a typical storage workload

of random mixed 4K requests in a 70/30 read-write ra-

tio. As device saturation is achieved, we do not evaluate

Decibel at higher degrees of parallelism.

Decibel is highly scalable and is able to saturate all

the devices, while presenting storage across the network

with latencies comparable to local storage. DPDK-based

clients suffer from an overhead of less than 30µs when

compared to local storage, while legacy clients have

overheads varying from 30-60µs depending on load.

SCMs offer substantially higher throughput for read-only

workloads compared to mixed ones making them more

heavily CPU-bound. Figure 11 demonstrates Decibel’s

ability to saturate all the devices for read-only work-

loads: the increased CPU load of processing requests is

reflected in the gap with the local workload at low core

counts. As the number of cores increase, the workload

becomes SCM-bound; Decibel scales well and is able to

saturate all the devices. At saturation, the DPDK-based

client has an overhead of less than 20µs, while legacy

clients suffer from overheads of approximately 90µs.

Once the devices are saturated, adding clients increases

latency purely due to queueing delays in software. All

configurations saturate the devices at less than 16 cores;

hence the latency plots in Figures 10 and 11 include

queueing delays and do not accurately reflect end-to-end

latencies. Table 2 compares latencies at the point of de-

vice saturation: for both workloads, Decibel imposes an
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Figure 12: Remote access latencies for Decibel at different de-

grees of device utilization against DRAM-backed storage.

70/30 All Reads

Xput Lat Xput Lat

Local 750K 422 1.7M 203

Remote 740K 488 1.7M 283

Decibel 740K 490 1.7M 290

Decibel (DPDK) 750K 450 1.7M 221

Table 2: Performance for Workloads (Latency in µs)

overhead of 20-30µs on DPDK-based clients compared

to local storage.

Future SCMs, such as 3DXpoint [49], are expected to

offer sub-microsecond latencies for persistent memories

and approximately 10µs latencies for NVMe storage.

With a view towards these devices, we evaluate Deci-

bel against a DRAM-backed block device. As seen in

Figure 12, DPDK-based clients have remote access la-

tencies of 12-15µs at moderate load, which increases to

26µs at NIC saturation. Legacy clients have access laten-

cies higher than 60µs, which demonstrates that the kernel

stack is a poor fit for rack-scale storage architectures.

dVol Isolation: Performance isolation in Decibel is

evaluated by demonstrating fair sharing of a device in

two different scheduling policies when compared with a

First-Come, First-Served (FCFS) scheduler that provides

no performance isolation. Strict Timesharing (STS) pro-

vides static resource partitioning, while in Deficit Round

Robin (DRR), dVols are prevented from interfering with

the performance of other dVols, but are allowed to con-

sume excess, unused bandwidth.

To illustrate performance isolation, Decibel is evaluated

with three clients, each with a 70/30 mixed random



Time (s)

0 50 100 150 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t 
(K

 I
O

P
S

)

0

15

30

45

60

75

90

105

120

Time (s)

0 50 100 150 200 250 300 350 400 450 500

L
a

te
n

c
y
 (

u
s
)

0

125

250

375

500

625

750

875

1000
Client 1 (30%)

Client 2 (30%)

Client 3 (30%)

Time (s)

0 50 100 150 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t 
(K

 I
O

P
S

)

0

15

30

45

60

75

90

105

120

Time (s)

0 50 100 150 200 250 300 350 400 450 500

L
a

te
n

c
y
 (

u
s
)

0

125

250

375

500

625

750

875

1000

Time (s)

0 50 100 150 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t 
(K

 I
O

P
S

)

0

15

30

45

60

75

90

105

120

Time (s)

0 50 100 150 200 250 300 350 400 450 500

L
a

te
n

c
y
 (

u
s
)

0

125

250

375

500

625

750

875

1000

(a) No Isolation (FCFS)

(b) Strict Timesharing (STS)

(c) Deficit Round Robin (DRR)

Figure 13: Isolation of a single device across multiple workloads in Decibel. Compared to the no isolation case in (a), the scheduling

policies in (b) and (c), provide clients 1 and 3 a fair share of the device, even in the face of the bursty accesses of client 2.

workload, against a single shared SCM. Each client con-

tinuously issues requests to its own dVol, such that the

dVol has 30 outstanding requests at any time. The dVols

are configured to have an equal proportion, i.e., 30%, of

the total device throughput, while the device ceiling is

set to 100% utilization.

As seen in Figure 13, each client receives a throughput

of 60K, leaving the device at 90% saturation. At the 3

minute mark, one of the clients experiences a traffic burst

for 3 minutes such that it has 90 simultaneous in-flight

requests. At 6 minutes, the burst subsides and the client

returns to its original load.

FCFS offers no performance isolation, allowing the burst

to create queueing overheads which impact throughput

and latency of all other clients by 25%. After the burst

subsides, performance returns to its original level. In

contrast, STS preserves the throughput of all the clients

and prevents clients from issuing any requests beyond

their 30% reservation. As each dVol has hard reserva-

tions on the number of requests it can issue, requests

from the bursty client are queued in software and see

huge spikes in latency. The performance of the other

clients remains unaffected at all times, but the excess ca-

pacity of the device remains unutilized.

DRR both guarantees the throughput of other clients and

is work conserving: the bursty client consumes the un-

used bandwidth until the device ceiling is reached, but



not at the cost of the throughput of other clients. La-

tency, however, for all the clients rises slightly – this is

not because of queueing delays, but because the device

latency increases as it gets closer to saturation.

5 Related Work

Network-Attached Storage: The idea of centralizing

storage in consolidated arrays and exporting disks over

the network [38] is not a new one and has periodically

been explored with changes in the relative performance

of CPU, networks, and disks. For spinning disk based

systems, Petal [41] is a virtualized block store that acts as

a building block for a distributed file system [65]. While

Petal focuses on aggregating physical disks for perfor-

mance, Decibel is concerned with the performance chal-

lenges of building isolated volumes for SCMs.

More recently, network-attached storage for flash de-

vices has been used in Corfu [4] and Strata [15]. Corfu

presents a distributed log over virtualized flash block-

devices while storing address translations at the clients.

As the clients are trusted, co-operating entities, Corfu

does not attempt to provide isolation between them.

Strata focuses on providing a global address space for a

scalable network file system on top of network-attached

storage, and discusses the challenges in providing data

plane services such as device aggregation, fault toler-

ance, and skew mitigation in a distributed manner. In

contrast, Decibel is an example of the high-performance

network-attached storage such file systems rely on, and

provides the services required for multi-tenancy that can-

not safely be implemented higher up the stack.

Network-attached Secure Disks (NASD) [20] explore se-

curity primitives and capabilities to allow sharing storage

devices without requiring security checks at an external

file manager on every request, while Snapdragon [1] uses

self-describing capabilities to verify requests and limit

the blocks a remote client has access to. SNAD [46] per-

forms both tenant authentication and block encryption at

the storage server to restrict unauthorized accesses.

Partitioned Data Stores: VoltDB [63] and MICA [43]

are both examples of shared-nothing in-memory data

stores, which explore vertical partitioning of hardware

resources to allow all operations to proceed without ex-

pensive cross-core coordination. Architecturally, the per-

core runtimes in Decibel resemble those in these systems

with the addition of persistent storage devices and the as-

sociated datapath services.

Chronos [36] is a more general framework for parti-

tioning applications by running several independent in-

stances in parallel, fronted by a load balancer aware of

the instance to partitioning mapping that can route re-

quests accordingly.

Application Managed Flash: Several recent research

storage systems have proposed using open-channel SSDs

for more predictable performance [42, 7, 29, 58]. These

devices expose internal flash channels, dies, and planes

to the system and allow for application-managed soft-

ware FTLs and custom bookkeeping policies. Of these

systems, Flashblox has demonstrated that providing

strong isolation and supporting multiple latency classes

on a shared SCM requires extending full system parti-

tioning to within the device. By binding device channels

and dies directly to tenants in hardware and providing

per-tenant accounting for garbage collection, it removes

multiple sources of performance interference and main-

tains low tail latencies in the face of competing tenants.

Application-managed flash is largely complementary to

Decibel and focuses largely on providing better and more

flexible implementations of services currently provided

by the FTL. These systems intentionally maintain a fa-

miliar block-like presentation for convenience and, as

such, Decibel could integrate with such systems to pro-

vide strong end-to-end performance isolation.

6 Conclusion

SCMs represent orders of magnitude changes to the

throughput, latency, and density of datacenter storage,

and have caused a reconsideration in how storage is pre-

sented, managed, and accessed within modern datacen-

ters. Decibel responds to the performance realities of

SCMs by providing dVols to delegate storage to tenants

within fully disaggregated storage architectures. dVols

focus exclusively on virtualizing storage and isolating

multiple tenants while ensuring that the storage is ac-

companied with a committed amount of compute and

network resources to provide tenants with predictable,

low-latency access to data.
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